Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

THE FACTORIES AND OTHER PLACES OF WORK ACT, (CAP. 514)

IN EXERCISE of the powers conferred by section 55 of the Factories and Other Places of Work Act, Cap. 514, the Minister for Labour and Human Resource Development makes the following Rules—

THE FACTORIES AND OTHER PLACES OF WORK (HAZARDOUS SUBSTANCES) RULES, 2007

Citation.

1. These rules may be cited as the factories and other places of work (Hazardous Substances) rules, 2007.

Interpretation.

2. In these rules, except where the context otherwise requires—

"air quality monitor" means any competent person who is authorized by the director, by a certificate in writing, to carry out monitoring and measurements of the substances in the air.

"biological monitoring" means a technique for measuring the presence of a chemical or its metabolites in tissues or excreta or for measuring pathological effects of toxin on the person.

"competent person" in relation to any duty or function, means a person who has adequate training, relevant qualifications and experience to enable him to perform that duty or function;

"Director" means the Director of Occupational Safety and Health Services; or occupier.

"Engineering Controls Examiner" means any competent person who is authorized by the Director in

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

writing, to carry out thorough examination and test of engineering control measures for the purposes of these rules.

" guidelines" means the guidelines describing the methodology for implementation of health and safety under these Rules;

"harmful substance" means any substance whether liquid, solid or gaseous which is hazardous or potentially hazardous to human or the environment and includes objectionable odours, radio-activity, noise and temperature.

"hazardous substances" means any chemical, waste, gas, medicine, drug, plant, animal or microorganism which are likely to be injurious to human health or the environment,

"measurement" means periodic evaluation of workplaces and organizational management systems in a factory or workplace for prevention of accidents, occupational diseases, ill-health or damage to property.

"occupational exposure limit" (OEL) means the levels of exposure or discharge or emissions as set out in Schedule 1 to these Rules:

"worker" includes a person who has entered into or works under a contract of service or apprenticeship, written or oral, express or implied, whether by way of manual labour or otherwise;

"workplace" includes any land, premises, location, vessel or thing at, in, upon or near where an employee is, in the course of employment.

"substance" includes any solid, liquid, vapour, gas or aerosol, or combination thereof;

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Application. 3.(1) These Rules shall apply to—

- **3.**(1) These Rules shall apply to— every factory, premises, places, process, operation, or work to which the provisions of the Factories and Other Places of Work Act apply;
- (2) Every employer, occupier or owner, agent, self-employed person or employee

Exposure limits.

- **4**. (1). Every employer shall ensure that exposure of hazardous substance—does not exceed the exposure limits set out in schedule 1 to these Rules;
- (2) Where the exposure limit of a hazardous substance is not provided for in Schedule 1 to these Rules, it shall be the responsibility of a supplier or manufacturer of such substance to provide a provisional exposure limit.
- (3) When two or more hazardous substances are present simultaneously in the working atmosphere and their combined effects have to be considered, Schedule 2 to these Rules shall apply.
- **5.** (1) The Minister may by notice in the Gazette, amend the Schedules to—
 - (a) vary the exposure limit;
 - (b) prohibit the use of a hazardous substance that may contaminate the working environment;
 - (c) specify particular measures of prevention or protection from the effects of a hazardous substance; or
 - (d) prescribe any other exposure limit of a hazardous substance.
- (2) In schedule 2 or prescribe any other exposure limits of air contaminants and emission levels of the chemical substances or prohibit the use of the substances that contaminate working environment or specify particular

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke measures of prevention or protection.

Control measures.

- **6**. (1) It shall be the duty of every employer to prevent his employees form being exposed to cardous substances.
- (2) Where it is not reasonably practical to prevent the exposure, it shall be the duty of every employer to control the exposure of employees from hazardous substances by-
 - (a) limiting the amount of hazardous substances used which may contaminate the working environment;
 - (b) limiting the number of employees who will be exposed or may be exposed;
 - (c) using a substitute for the hazardous substance;
 - (d) limiting the period during which an employee will be exposed or may be exposed;
 - (e) introducing engineering control measures for the control of exposure, which may include the following:
 - (i) process separation, automation or enclosure;
 - (ii) installation of local extraction ventilation systems to processes, equipment and tools for the control of emission of an air borne hazardous substances;
 - (iii) use of wet methods;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

- (iv) separate workplaces for different processes;
- (f) introducing appropriate work procedures which an employee must follow where materials are used or processes are carried out which could give rise to exposure of an employee and that procedures shall include written instructions to ensure:
 - (i) that a hazardous substance is safely handled, used and disposed of;
 - (ii) that process machinery, installations, equipment, tools and local extraction and general ventilation systems are safely used and maintained;
 - (iii) that machinery and workplaces are kept clean; and
 - (iv) that early procedures are in place for corrective action.

Personal protective equipment.

- **7.** (1). Where it is not reasonably practical to ensure that the exposure of an employee is adequately controlled as contemplated in Rules 6, the employer shall-
 - (a) in the case of an air bone hazardous substances, provide the employee with suitable respiratory protective equipment and protective clothing; and
 - (b) in case of hazardous substances which can be absorbed through the skin, provide the employee with suitable impermeable protective equipment.
 - (2) Where respiratory protective equipment is

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke provided, the employer shall ensure-

- (a) that the relevant equipment is capable of controlling the exposure to below the OEL for the relevant hazardous substances
- (b) that the relevant equipment is correctly selected and properly used;
- (c) that information, instructions, training and supervision which is necessary with regard to the use of the equipment is known to the employees; and
- (d) that the equipment is kept in good condition and efficient working order.
- (3). Every employer shall, -
 - (a) issue no used personal protective equipment to an employee, unless the relevant protective equipment is decontaminated and sterilized;
 - (b) provide separate containers or storage facility for personal protective equipment; and
 - (c) ensure that all personal protective equipment not in use is stored only in the place provided.
- (4) Every employer shall as far as is reasonably practicable, ensure that all contaminated personal protective equipment is cleaned and handled in accordance with the following procedures:
 - (a) where the equipment is cleaned on the premises of the employer, care shall be taken to prevent contamination during handling, transportation and cleaning;

- (b) where the equipment is sent off the premises to a contractor for cleaning purposes-
 - (i) the equipment shall be packed in impermeable containers;
 - (ii) the containers shall be tightly sealed and have clear indication thereon that the contents thereof are contaminated; and
 - (iii) the relevant contractor shall be fully informed of the requirements of these rules and the precautions to be taken for the handling of the contaminated equipment.
- (5) Subject to the provisions of sub rule 4 (b), an employer shall ensure that no person removes dirty or contaminated personal protective equipment from the premises; Provided that where contaminated personal protective equipment has to be disposed of, it shall be treated as waste.
- (6) Every employer shall, , provide employees using personal protective equipment with : -
 - (a) adequate washing facilities which are readily accessible and located in a an area where the facilities will not become contaminated, in order to enable the employees to meet a standard of hygiene consistent with the adequate control of exposure, and to avoid the spread of hazardous substances
 - (b) two separate lockers separately labeled "Protective clothing" and "Personal

PRODUCTIVITY CONSULTING LTD <u>www.productivity.co.ke</u> 0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

clothing", and ensure that the clothing is kept separately in the appropriate locker; and

(c) separate "clean" and "dirty" changing rooms if the employer uses or processes highly hazardous substances to the extent that the hazardous substances could endanger the health of employees.

Maintenance and testing of engineering controls.

8. Every employer shall ensure:

- (1) That all control equipment and facilities provided are maintained in good working order; and
- (2) That thorough examinations and tests of engineering control measures are carried out at intervals not exceeding 24 months by an engineering controls examiner and a report issued.

Submission of report.

9. An engineering controls examiner shall submit a signed report to the Director within thirty days following such examination and test.

protection against radioactive and carcinogenic substances.

- **10.**(1) Every employer shall ensure that any processes involving a significant risk of exposure to carcinogenic, radioactive, mutagenic or teratogenic substances shall be performed within an enclosed system so as to prevent any exposure of the workers to the substance.
- (2) Where any of the processes may require direct handling of carcinogenic, radioactive, mutagenic or teratogenic substances, every employer shall ensure that such processes are automated or are conducted by use of remote controlled systems.

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

(3) Every employer shall issue a permit to work certificate to any person carrying out maintenance and service of an enclosed system.

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Material Safety Data Sheet.

- **11.**(1).Every manufacturer or agent of hazardous substances shall supply information on the characteristics such substances as regards the health effects of the substances on human health.
 - (2)Every person who manufactures, imports, sells or supplies any hazardous substance for use at work, shall ensure that the substance is accompanied by a material safety data sheet containing all the information set out in schedule 3 to these Rules:
 - (3)Every employer who uses any hazardous substance at work shall be in possession of a copy of material safety data sheet for each type of substance in use at his premise.
 - (4)Every employer shall make the material safety data sheet available for inspection at the request of any person interested or affected.
- (5) Every employer shall provide full information on the composition and properties of a product to the Director, when called upon to do so.

Disposal of chemical and other hazardous substances.

- 12. Every employer shall ensure that the quantity of waste from hazardous substances in his use are kept at reasonable minimum levels and that such waste is disposed of in a manner less harmful to human and the environment, including-
 - (a) recycling the waste material where applicable;
 - (b) depositing of hazardous waste substances is placed into containers that will prevent the likelihood of exposure during handling;
 - (c) ensuring that all vehicles, re-usable containers and covers which have been in contact with hazardous waste chemical

PRODUCTIVITY CONSULTING LTD <u>www.productivity.co.ke</u> 0725535054, 0734973581. GoK/DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

substances are cleaned and decontaminated after use in such a way that the vehicle, containers or covers do not cause a hazard to human and environment.

- (d) ensuring that all employees employed in the collection, transportation and disposal of harmful waste chemical substances are not exposed to the harmful waste and are provided with suitable personal protective equipment;
- (e) ensuring that all hazardous waste which can cause exposure is disposed of only on sites specifically designated for this purpose.

Labeling of containers.

- **13.** (1) Every manufacturer or supplier of hazardous substances shall ensure that the hazardous substance is marked or labeled in a distinctive manner indicating the nature of their contents, health hazards and instructions for safe handling of the substance.
- (2)Every manufacturer or supplier of a hazardous substance shall ensure that the chemical or common name used to identify the chemical on the label shall be the same as that used on the material safety data sheet.

Training and Information.

- **14.**(1) It shall be the duty of every employer to inform the workers of the hazards associated with exposure to chemicals used at the workplace and every employer shall facilitate the training of his worker on safety by-
 - (a) instructing the workers how to obtain and use the information provided on labels and chemical safety data sheets;

- (b) using the chemical safety data sheets, along with information specific to the workplace, as a basis for the preparation of instructions to workers, which should be written if appropriate;
- (2) Every employer shall ensure that workers are trained and certified by a competent person, on continuing basis in the practices and procedures to be followed for safety in the use of chemicals at work.
- (3) Every employer shall, before any employee is exposed, ensure that the employee is adequately and comprehensively informed and trained, and is thereafter informed and trained at intervals as may be recommended by the health and safety committee or by the Director, with regard to-
 - (a) the contents and scope of these rules;
 - (b) the potential source of exposure;
 - (c) the potential risks to health caused by exposure
 - (d) the potential detrimental effects of exposure on his or her reproductive ability;
 - (e) the measure to be taken by the employers to protect an employee against any risk from exposure;
 - (f) the precaution to be taken by an employee to protect himself against the health risks associated with the exposure, including the wearing and use of protective clothing and respiratory protective equipment;
 - (g) the necessary, correct use, maintenance and

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

potential of safety equipment, facilities and engineering control measures provided;

- (h) the necessity of personal air sampling and medical surveillance;
- (i) the importance of good housekeeping at the workplace and personal hygiene;
- the safe working procedures regarding the use, handling, storage and labeling of the chemical and other hazardous substance at the workplace; and
- (k) procedures to be followed in the event of spillages, leakages or any similar emergency situation which could take place by accident;
- (4) Every employer shall give written instructions to the drivers of vehicles carrying the hazardous substances, the procedures to be followed in the event of spillages, leakages or any similar emergency situation which could take place by accident.

Air monitoring and Measurement.

- 14. (1) In every workplace where chemicals and other hazardous substances are used the employer shall ensure that measurements of the substances in the air are carried out at least once every twelve months by a certified air quality monitor , in order to determine the prevailing occupational exposure levels.
- (2) An Air Quality Monitor shall cause the samples to be analyzed by the Government Chemist or any other laboratory approved by the Director to determine exposure levels and biological exposure indices respectively.

- (3) The e costs in connection with such measurements shall be met by the employer.
- (4) The results of measurement of the substances in the air shall be recorded and shall specify: -
 - (a) date, time and period of sampling
 - (b) nature of work/process evaluated
 - (c) number of the workers exposed
 - (d)measuring methods including analytical methods
 - (e) type of measurements (e.g. dust, fumes, vapors....)
 - (f) results of measurements
 - (g) recommendations for remedial measures to be taken
 - (h)name of the person taking the measurements.
- (5) Every employer shall keep a copy of the report of the results of measurements carried out for a period of two years.
- (6) An Air Quality Monitor shall submit a signed copy of the report of the results of measurements to the director within a period of thirty days from the date of carrying out the measurements.
- (7) Where the Air Quality Monitor is of the opinion that occupational exposure levels pose imminent danger to workers' health he shall immediately and not

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

later than 48 hours, inform the Occupational Safety and Health officer of the area.

Duty of competent persons.

- **15.**(1) Every Air Quality Monitor shall regularly inspect, calibrate and maintain equipment for measuring air contaminants.
- (2) It shall be the duty of a competent person to carry out biological monitoring with the consent of the employee.
- (3) A competent person shall inform employees on the scope of biological monitoring and on the significance of the results;

Guidelines on hazardous substances.

16. The director may review and issue guidelines, on how the monitoring of air contaminants shall be carried out.

Duty of Employees.

- 17. It shall be the duty of every employee-
 - (a) not to interfere with or misuse any means, appliance, convenience or any other thing provided for securing the health, safety or welfare of him or others at the workplace;
 - (b) to make use of any means, appliance, convenience or any other thing provided for securing the health, safety or welfare of himself or others at the workplace;
 - (c) not to, without reasonable cause do anything likely to endanger himself or any other person at the workplace;

PRODUCTIVITY CONSULTING LTD <u>www.productivity.co.ke</u> 0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

- (d) to report forthwith to the supervisor or any other person having authority over him, any situation which he has reason to believe would present a hazard; and
- (e) to report to his supervisor any accident or injury that arises in the course of or in connection with his work.

Medical examination.

18. In every workplace where hazardous substances are in use, the employer shall ensure that the worker undergoes medical examination in accordance with the requirements of the Factories and Other Places of Work (Medical Examination) Rules, 2005.

Offences and penalties.

19. Any person who contravenes or fails to comply with any provision of these rules shall commit an offence and the provisions of the Act on offences and penalties shall mutatis mutandis apply.

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

SCHEDULE 1

TABLE 1

OEL-CL: OCCUPATIONAL EXPOSURE LIMITS – CONTROL LIMITS FOR HAZARDOUS CHEMICAL SUBSTANCES

Substance	Formula	TW. OEI	A L-CL	SHORT OEL-CL	ΓERM	1995
		ppm	mg/m ³	ppm	mg/m	Notes
Acryl amide	CH ₂ =CHCONH ₂	-	0.3	-	-	Sk
Acrylonitrile	CH ₂ =CHCN	2	4	-	-	Sk
Arsenic & compounds, except arsine (as As)	As	-	0.1	_	-	
Asbestos:m (dee note)	CH	_	16			
Benzene Bis (chloromethyl) ether	C_6H_6	5 0.00	10	_	_	
(BCME)	CICH ₂ OCH ₂ CI	1	0.005	_	_	
Buta-1,3-diene	CH ₂ =CHCH=CH ₂	10	22	_	_	
2-Butoxyethanol	C ₄ H ₉ OCH ₂ CH ₂ OH	25	120	-	_	Sk
Cadmium & cadmium	Cd		0.05			
compounds, except cad-	Cu	Ī	0.03	<u> </u>		
mium oxide fume and						
cadmium sulphide pig-						
ments (as Cd)						
Cadmium oxide fume (as	CdO	_	0.05	_	0.05	
Cd)			0.05		0.05	
Cadmium sulphide						
pigments (respirable dust	CdS		0.04			
Cd)	a a	1.0	20			
Carbon disulphide	CS_2	10	30	-	_	Sk
Chromium (VI)	Cr	_	0.05	_	_	
compounds (as Cr)						
1,2-Dibromoethane	BrCH ₂ CH ₂ Br	0.5	4	_	_	Sk
(ethylene dibromide)		100	250			
Dichloromethane	CH_2CI_2	100	350	-	F	1

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

i ongoing osite prout	ICLIVI	Ly.CU.KC			•
$CH_2.(C_6H_3CINH_2)_2.$	-	0.005	-	_	Sk
C ₂ H ₅ OCH ₂ CH ₂ OH	10	37	-	_	Sk
$C_2H_5OCH_2OOCCH_3$.	10	54	-	_	Sk
CH ₂ CH ₂ O	5	10	-	_	
НСНО	2	2.5	2	2.5	
	-	10	-	-	Sen
HCN	-	-	10	10	Sk
	-	0.02	-	0.07	Sen
CH ₃ OCH ₂ CH ₂ OH	5	16	-	-	Sk
CH ₃ COOCH ₂ CH ₂ O	5	24			Sk
CH ₃			_	_	OK.
Ni	-	0.5	-	-	
Ni		0.1			
141					
	-	0.5	-	-	
See Annexure 6	-		-	-	
	-	0.6	-	-	
SiO ₂					
	-		-	-	
$C_6H_5CH=CH_2$	100				
CH ₃ CCI ₃	350	1900	450	2450	
CCI ₂ =CHCI	100	535	150	802	Sk
CH ₂ =CHCI		-	-	-	
CH ₂ =CCI ₂	10	40	-	_	
	-	5	-	-	Sen
	CH ₂ .(C ₆ H ₃ CINH ₂) ₂ . C ₂ H ₅ OCH ₂ CH ₂ OH C ₂ H ₅ OCH ₂ OOCCH ₃ . CH ₂ CH ₂ O HCHO HCN CH ₃ OCH ₂ CH ₂ OH CH ₃ COOCH ₂ CH ₂ O CH ₃ Ni Ni See Annexure 6 SiO ₂ C ₆ H ₅ CH=CH ₂ CH ₃ CCI ₃ CCI ₂ =CHCI CH ₂ =CHCI	CH ₂ .(C ₆ H ₃ CINH ₂) ₂ C ₂ H ₅ OCH ₂ CH ₂ OH 10 C ₂ H ₅ OCH ₂ OOCCH ₃ . 10 CH ₂ CH ₂ O 5 HCHO 2 HCN - CH ₃ OCH ₂ CH ₂ OH 5 CH ₃ COOCH ₂ CH ₂ O 5 Ni - See Annexure 6 Si0 ₂ - C ₆ H ₅ CH=CH ₂ 100 CH ₃ CCI ₃ 350 CCI ₂ =CHCI 100 CH ₂ CHCI 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C ₂ H ₅ OCH ₂ CH ₂ OH C ₂ H ₅ OCH ₂ OOCCH ₃ . 10 54 - CH ₂ CH ₂ O 5 10 - HCHO 2 2.5 2 - 10 - HCN - 10 - - 0.02 - CH ₃ OCH ₂ CH ₂ OH 5 16 - CH ₃ COOCH ₂ CH ₂ O 5 24 - Ni - 0.5 - Ni - 0.1 - See Annexure 6 - 8 - SiO ₂ - 0.4 - C ₆ H ₅ CH=CH ₂ 100 420 250 CH ₃ CCI ₃ 350 1900 450 CCI ₂ =CHCI 7 - CH ₂ =CCI ₂ 10 40 -	CH ₂ .(C ₆ H ₃ CINH ₂) ₂ 0.005 C ₂ H ₅ OCH ₂ CH ₂ OH C ₂ H ₅ OCH ₂ OOCCH ₃ . 10 54 CH ₂ CH ₂ O HCHO

^{**}Vinyl chloride is also subject to an overriding annual TWA OEL- CL of 3 ppm.

TABLE 2 OEL-RL: OCCUPATIONAL EXPOSURE LIMIT – RECOMMENDED LIMIT FOR HAZARDOUS CHEMICAL SUBSTANCES

Substance	Formula	TWA OEL-RL	SHORT TERM OEL-RL	1995
-----------	---------	------------	----------------------	------

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

			Mg/m^3		Mg/m ³	Notes
						notes
Acetaldehyde	CH ₃ =CHO	100	180	150	270	
Acetic acid	CH ₃ COOH	10	25	15	37	
Acetic anhydride	(CH ₃ CO) ₂ O	-	-	-	20	
Acetone	CH ₃ COCH ₃	750	1780	1500	3560	
Acetonitrile	CH ₃ CN	40	70	60	105	
o-Acetylsalicylic acid	CH ₃ COOC ₆ H ₄ CO OH	_	5	-	-	
AcrylaJdehyde (Acrolein)	CH ₂ =CHCHO	0.1	0.25	0.3	0.8	
Acrylic acid	CH ₂ =CHCOOH	10	30	20	60	
Aldrin (ISO)	$C1_2H_8CI_6$	_	0.25	_	0.75	Sk
Allyl alcohol	CH ₂ =CHCH ₂ OH	2	5	4	10	Sk
Allyl chloride	CH ₂ =CHCH ₂ Cl	1	3	_	6	
Allyl 2,3-epoxypropyl ether	CH2-CHCH2OCH	5	22	10	44	Sk
Allyl glycidyl ether (AGE)	CH ₂ =CHCH ₂ OCH ₂ CHCH ₂ O	5	22	10	44	Sk
Aluminium alkyl			2			
compounds		_	2	_	_	
*Aluminium metal	A1					
total inhalable dust		-	10	-	-	
respirable dust		-	5	-	-	
*Aluminium oxides	AI ₂ O ₃ AI(OH) ₃ and AlOOH					
total inhalable dust		_	10	_	-	
respirable dust		_	5	_	-	
Aluminium salts, soluble		_	2	_	-	
Aminodimethyl-benzene	$(CH_3)_2C_6H_3NH_2$	2	10	10	50	Sk
2-Aminoethanol	NH ₂ CH ₂ CH ₂ OH	3	8	6	15	
2-Aminopyridine	$NH_2C_5H_4N$	0.5	2	2	8	
Ammonia	NH_3	25	17	35	24	
Ammonium chloride, fume	NH ₄ CI	_	10	_	20	
Ammonium sulphamidate	NH ₂ SO ₃ NH ₄	_	10	_	20	
n-Amyl acetate	CH ₃ COOC ₅ H _{I1}	100	530	150	800	
sec-Amyl acetate	CH ₃ COOCH(CH ₃) C ₃ H ₇	-	-	150	800	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

	H ongoing osh@produc	tivity (CO)	ic			
Aniline	$C_6H_5NH_2$	2	10	5	20	Sk
Anisidines. 0- and	NH ₂ C ₆ H ₄ OCH ₃	0.1	0.5			Sk
p-isomers		0.1	0.5	_	_	SK
Antimony & compounds	Sh		0.5			
(as Sb)	30	_	0.5		_	
Arsine	AsH ₃	0.05	0.2	-	-	
Asphalt, petroleum			5		10	
fumes		_	3		10	
Aspirin	CH ₃ COOC ₆ H ₄ COOH	-	5	-	-	
Atrazine (ISO)	C ₈ Hl ₄ ClN ₅	-	10	-	-	
Azinphos-methyl (ISO)	(CH ₃ O) ₂ PSSCH ₂ .(C ₇ H ₄ N ₃ O)	_	0.2	0.6	-	Sk
Aziridine	CH ₂ CH ₂ NH	_	10	-	-	
y-BHC (ISO)	$C_6H_5C_{14}$	_	0.5	-	1.5	Sk
Barium compounds,	D.		0.5			
soluble (as Ba)	Ba	_	0.5	-	_	
Barium sulphate,	BaSO ₄		2			
respirable dust	BaSO ₄	-	2	_	-	
Benomyl (ISO)	$C_{14}H_{18}N_4O_3$		10		15	
Benzenethiol	C ₆ H ₅ SH	0.5	2	-	-	
Benzene-						
1,2,4-lricarboxylic acid	$C_9H_4O_5$	-	0.04	-	-	San
1,2-anhydride						
p-Benzoquinone	$C_9H_4O_2$	0.1	0.4	0.3	1.2	
Benzoyl peroxide	$(C_6H_5CO)_2O_2$	-	5	-	-	
Benzyl butyl phthalate	C ₆ H ₅ CH ₂ COOC ₆ H ₄ -CO OC ₄ H ₉	-	5	-	-	
Benzyl chloride	C ₆ H ₅ CH ₂ Cl	1	5	_	_	
Beryllium	Be	_	0.002	_	_	
Biphenyl	$(C_6H_5)_2$	0.2	1.5	0.6	4	
2,2-Bis(p-methoxy-pheny	$C_{14}H_9Cl_5$	_	1	-	3	
1)-1,1,1-						
trichloroethane						
Bis(2,3-epoxypropyl)	(OCH ₂ CHCH ₂) ₂ O	0.1	0.6			
ether		0.1	0.0		_	
Bis(2-ethylhexyl	C_6H_4 .(COOCH ₂ CH(C_2		5		10	
phthalate)	H_5)- C_4H_9) ₂	_	3		10	
2,2-Bis(p-melho-xyphenyl	$C_{16}H_{15}Cl_3O_2$	-	10	-	-	
Bomah-Richleroethane	$\mathbf{G}_{10}\mathbf{H}_{16}\mathbf{O}$	2	12 10	3	158	
Bismuth felluride Boron tribromide	Bi ₃ Te ₃	-	10	1	<u> </u>	
Bismuth Boron trifluoride telluride,	BETe ₃		5]	B 0	
seleniumdoned)	C ₀ H ₁₂ BrN ₂ O ₂	1	$\frac{1}{10}$	3	20	
Borates (tetra) sodium	Br ₂	0.1	0.7	0.3	2	
Salts Bromine pentafluoride	BrF ₅	0.1	0.7	0.3	2	
anhydrous Bromochloromethane	Na B Q 1	200	1050		1300	
decahydrate Bromoelhane	$Na_{7}B_{5}O_{7}.10H_{2}O$	200	§90		1110	
pentahydrate Bromoethylene	Nã2B4Q75H2O	5	$\frac{1}{20}$	}	=	ļ
Brom%rm	CHBr ₃ 20	0.5	5	-	-	Sk
Bromomethane	CH ₃ Br	5		15	60	Sk
Bromotrifluoromethane	CF ₃ Br	1000	6100	1200	7300	<u> </u>

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Scrupational Safety and I	. 10	600	1430	750	1780	
Anthwandawiro Magha				50	150	Sk
Brichert (LloN), PHD OS				150	450	
Butan-2-one	CH ₃ COC ₂ ,H ₅	200	590	300	885	
trans-But-2-enal	CH₃CH=CHCHO	2	6	6	18	
Butyl acetate	CH ₃ COO(CH ₂) ₃ CH ₃	150	710	200	950	
see-Butyl acetate	CH ₃ COOCH(CH ₃)CH ₂ CH ₃	200	950	250	1190	
tert-Butyl acetate	CH ₃ COOC(CH ₃) ₃	200	950	250	1190	
Butyl acrelate	$C_7H_{12}O_2$	10	55			
n-Butyl alcohol	CH ₃ CH ₂ CH ₂ CH ₂ OH	_		50	150	Sk
see-Butyl alcohol	CH ₃ CH ₂ CHOHCH ₃	100	300	150	450	Sk
tert-Butyl alcohol	(CH ₃) ₃ COH	100	300	150	450	
n-Butylamine	CH ₃ CH ₂ CH ₂ CH ₂ NH ₂	_	_	5	15	
Butyl benzyl phthalate	C ₆ H ₅ CH ₂ COOC ₆ H ₄ -COOC ₄ H ₉	_	5	-	-	
n-Butyl chlor%rmate	CICO ₂ C ₄ H ₁₀	1	5.6		_	
ButyI-2,3-epoxy-propyl		-				
ether	C ₄ H ₉ OCH ₂ CHCH ₂ O	25	135	-	-	
n-Butyl glycidyl ether						
(BGE)	C ₄ H ₉ OCH ₂ CHCH ₂ O	25	135	_	-	
Butyl lactate	C ₇ H ₁₄ O ₃	5	25			
Butyl lactate		3	23		-	
2-sec-Butylphenol	C ₂ H ₅ .(CH ₃)CHC ₆ H ₄ O H	5	30	-	-	Sk
Caesium hydroxide	CsOH		2			
Calcium carbonate	CaCO ₃	_	2		[
total inhalable dust	CaCO ₃		10			
		Ī	5	_		
respirable dust	C-NC N	-		_	1	
Calcium cyanamide	Ca(CH)	ľ	0.5		1	
Calcium hydroxide	Ca(OH) ₂	ľ	5		-	
Calcium oxide	CaO	-	2	-	-	
Calcium silicate			1.0			
total inhalable dust		<u> </u>	10	-	<u> </u>	
respirable dust		-	5	-	-	
Camphor, synthetic	$C_{10}H_{16}O$	2	12	3	18	
Caprolactam	NH(CH ₂) ₅ CO					
dust		-	1	-	3	
vapour		5	20	10	40	
Captafol (ISO)	$C_{10}H_9Cl_4NO_2S$	-	0.1	-	-	Sk
Captan (ISO)	C ₉ H ₈ Cl ₃ NO ₂ S	[-	5	-	15	
Carbaryl (ISO)	C ₁₀ H ₇ OCONHCH ₃	-	5	-	10	
Carbuforan (ISO)	$C_{12}H_{15}NO_3$		0.1	-		
Carbon black	C		3.5	_	7	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

m ongoing osite prod					
CO_2	5000	9000	15000	27000	
CO	50	55	300	330	
CBr_4	0.1	1.4	0.3	4	
CCl ₄	2	12.6	-	-	Sk
$COCl_2$	-	0.4	-	-	Sk
$C_6H4.(OH)_2$	5	20	-	-	
	-	10	-	20	
	5	-	-	-	
	-	10	-	-	
	-	5	-	-	
$C_{10}H6Cl_8$	-	0.5	-	2	Sk
C H Cl (opprov)		1		2	Sk
$C_{12}\Pi_7C_{13}(approx)$		1		2	SK
					Sk
		0.5		1	Sk
$C_6\Pi_2CI3C_6\Pi_3CI_2$		0.5		1	SK
					Sk
Cl_2	0.5	1.5	1	3	
ClO_2	0.1	0.3	0.3	0.9	
ClF ₃	-	-	0.1	0.4	
ClCH ₂ CHO	-	-	1	3	
C ₆ H ₅ COCH ₂ Cl	0.05	0.3	-		
ClCH ₂ COCl	0.05	0.2		-	
C_6H_5Cl	50	230		-	
CH ₂ BrCl	200	1050	250	1300	
CH2=CClCH=CH ₂	10	36	-	-	Sk
CHCIF ₂	1000	3500	-	-	
OCH CHCH CI	2	Q	5	20	Sk
OCH ₂ CHCH ₂ CI	2	0	3	20	SK
C_2H_5Cl	1000	2600	1250	3250	
ClCH ₂ CH ₂ OH	-	-	1	3	Sk
CH ₂ =CHCl+	7			-	
CHCl ₃	2	9.8	-		Sk
CH ₃ Cl	50	105	100	210	
CIC II NO		1			C1-
CIC6H4INU2	_	1		_	Sk
CCIE CE	1000	6320			
CCII '2CI '3	1000	0320			
	CO ₂ CO CBr ₄ CCl ₄ CCCl ₄ COCl ₂ C ₆ H4.(OH) ₂ C ₁₀ H6Cl ₈ C ₁₂ H ₇ Cl ₃ (approx) C ₆ H ₂ Cl3C ₆ H ₃ Cl ₂ Cl ₂ ClO ₂ ClF ₃ ClCH ₂ CHO C ₆ H ₅ COCH ₂ Cl ClCH ₂ COCl ClCH ₂ COCl C ₆ H ₅ Cl CH2=CClCH=CH ₂ CHCIF ₂ OCH ₂ CHCH ₂ Cl CHCIF ₂ CHCIF ₂ CHCIF ₂ CHCIF ₂ CHCIF ₂ CHCIF ₂ CHCICH ₂ CHCH ₂ Cl	CO ₂ CO CO CO CBr ₄ CCl ₄ CCl ₄ CCl ₂ CoCl ₂ C ₆ H4.(OH) ₂ 5 C ₁₀ H6Cl ₈ - C ₁₂ H ₇ Cl ₃ (approx) - Cl ₂ Cl ₂ ClO ₂ ClC ₂ ClC ₄ ClCH ₂ CHO ClCH ₂ CHO C ₆ H ₅ COCH ₂ Cl ClCH ₂ COCl ClCH ₂ COCl ClCH ₂ COCl CH ₂ BrCl CH ₂ BrCl CH ₂ CHCH ₂ Cl CH2=CCICH=CH ₂ CHCIF ₂ CHCICH ₂ COCl CH ₂ CHCH ₂ Cl CHCIF ₂ CHCIF ₂ CHCIF ₂ COCH ₂ CHCH ₂ Cl CHCH ₂ CHCH ₂ Cl CC ₂ H ₅ Cl CH ₂ CHCH ₂ Cl CC ₄ CHCH ₂ Cl CCCHCH ₂ CHCH ₂ Cl CCCCHCH ₂ CHCH ₂ Cl CCCCHCH ₂ CHCH ₂ Cl CCCCCHCH ₂ CHCH ₂ Cl CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CO CBr ₄ CCl ₄ CCl ₄ CCl ₄ COCl ₂ C ₆ H4.(OH) ₂	CO2 CO	CO2

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

	biochem (OoN), FHD OSI				1		•
	Chloropicrin	CCl ₃ NO ₂	0.1		0.3	2	
	p-Chloroprene	CH ₂ =CClCH=CH ₂	10	36	_	-	Sk
	3-Chloropropene	CH ₂ =CHCH ₂ Cl	1	3	2	6	
	Chlorosulphonic acid	HSO ₃ Cl	_	1	_	-	
	a.Chlorotoluene	C ₆ H ₅ CH ₂ Cl	1	5			
	2-Chlorotoluene	C ₇ H ₇ Cl	50	250	-	-	
	2-Chloro-6-(trichloro-me	C ₆ H ₃ Cl ₄ N		10		20	
	thyl) pyridine	C ₆ H ₃ Cl ₄ N	-	10	-	20	
	Chlorpyrifos (ISO)	C ₉ H ₁₁ Cl ₃ NO ₃ PS		0.2		0.6	Sk
	Chromium	Cr	_	0.5	_	<u> </u>	
	Chromium(II)			0.5			
	compounds (as Cr)	Cr	_	0.5	_	<u> </u>	
	Chromium(lII)			0.5			
	compounds (as Cr)	Cr	-	0.5	_	<u> </u>	
	Coal dust						
	respirable dust		_	2	_	_	
	Coal tar pitch volatiles		_	0.14	_	_	
	(as cyclohexane solubles)						
	Cobalt and compounds						
	(as Co)	Co	-	0.1	_	-	
	Copper	Cu					
	fume		_	0.2	_	L	
	dusts and mists (as Cu)		_	1	_	2.	
	Colton dust		_	0.5	_		
	Cresols, all isomers	CH ₃ C ₆ H ₄ OH	5	22	_	L	Sk
	Cristobalite, respirable						
	dust	SiO_2	-	-	-	-	
	Crotonaldehyde	СН3СН=СНСНО	2.	6	6	18	
	Cryofluorane (INN)	CCIF ₂ CCIF ₂	1000	7000	1250	8750	
	Cumene	C ₆ H5CH(CH ₃) ₂	25	120	75	370	Sk
	Cyanamide	H ₂ NCN	_	2.	_	-	
	Cyanides,		_	5	_	_	Sk
	except hydrogen cyanide,						
	cyanogen & cyanogen						
	chloride, (as-CN)						
	Cyanogen	(CN) ₂	10	20		L	
	Cyanogen chloride	CICN			0.3	0.6	
	Cychlohexane	C_6H_{12}	100	340	300	1030	
	Cyclohexanol	$C_{6}H_{11}OH$	50	200	_	1030	
I	Cyclohexanone	$C_6H_{10}O$	25	100	T 100	400	l
	Cyclonexanone	C ₆ 11 ₁₀ C	43	100	100	1 00	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Biochem (UoN), FHD USI						
Cyclohexene	C_6H_{10}	300	1015	î	Ī	i
Cyclohexylamine	$C_6H_{11}NH_2$	10	40	-	_	Sk
Cyclonite (RDX)	$C_3H_6N_6O_6$	-	1.5		3	Sk
Cyhexatin (ISO)	$(C_6H_{11})_3SnOH$	_	5	-	10	
2,4D (ISO)	C ₆ H ₃ Cl ₂ OCH ₂ COOH	_	10	-	20	
DDM	$H_2NC_6H_4CH_2C_6H_4NH_2$	0.1	0.8		4	
DDT	$C_{14}H_9Cl_5$	-	1	-	3	
DDVP	(CH ₃ O) ₂ POOCH=CCl ₂	0.1	1	-	3	Sk
2,4-DES	C ₈ H ₇ Cl ₂ NaO ₅ S	-	10		20	
DMDT	$C_{16}H_{15}Cl_3O_2$	-	10	-	_	
Dems, commercial	$C_{23}H_{22}O_6$	_	5	_	10	
Diacetone alcohol	CH ₃ COCH ₂ C(CH ₃) ₂ O H	50	240	75	360	
Dialkyl 79 phthalate	C ₆ H ₄ .(COOC ₇ -9 H ₁₅ -19) ₂	-	5	-	-	
Dialkyl phthalate	C ₆ H ₄ .(COOCH ₂ CHCH) ₂	_	5	_		
2,2'		1	1			C1
-Diaminodi-ethylamine	(NH ₂ CH ₂ CH ₂) ₂ NH	1	4	-	-	Sk
4-4'-Diaminodiphenyl-me thane (DADPM)	H ₂ NC ₆ H ₄ CH ₂ C ₆ H ₄ NH ₂	0.1	0.8	0.5	4	
1,2-Diaminoethane	NH ₂ CH ₂ CH ₂ NH ₂	10	25	_	_	
Diammonium						
peroxodisulphate	$(NH_4)_2S_2O_8$	_	1	_	_	
(measured as (S_2O_8)	(1114)20208		1			
Diatomaceous earth,						
natural respirable dust		-	1.5	-	-	
Diazinon (ISO)	$C_{12}H_{21} N_2O_3PS$		0.1		0.3	Sk
Diazomethane	CH ₂ =N ₂	0.2	0.1		0.5)K
Dibenzoyl peroxide	$(C_6H_5CO)_2O_2$	0.2	5		[
Dibismuth tritelluride	Bi ₂ Te ₃		10		20	
	D121 C3		10		20	
Dibismuth tritelluride, selenium doped	Bi ₂ Te ₃	_	5	-	10	
Diborane	B_2H_6	0.1	0.1	-	-	
Diboron trioxide	B_2O_3	_	.10	-	20	
Dibrom	$C_4H_7Br_2Cl_2O_4P$	-	3	-	6	
1,2-Dibromo-2,2-						
dichloroethyl dimethyl	$C_4H_7Br^2Cl_2O_4P$	-	3	-	6	
phosphate						

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

i	Biochem (OoN), FIID OSI	a ongoing osne produc	tivity.co.	<u>ke</u>	ı	1	
	Dibromodifluoro-methane	CBr ₂ F ₂	100	860	150	1290	
	Dibutyl hydrogen phosphate	(n-C ₄ H ₉ O ₂ .(OH)PO	1	5	2	10	
	Di-n-butyl phosphate Dibutyl phthalate	(n-C ₄ H ₉ O ₂ .(OH)PO C ₆ H ₄ .(CO ₂ C ₄ H ₉)2	1	5 5	2	10 10	
	6,6' -Di-tert-butyl-4,4'	$C_{22}H_{30}O_2S$	-	10	-	20	
	Dichloroacetylene	ClC=CCl	_	-	0.1	0.4	
	1,2-Dichlorobenzene	$C_6H_4Cl_2$	_	_	50	300	
	1,4-Dichlorobenzene	$C_6H_4Cl_2$	25	150	50	300	
	Dichlorodifluoro-methane	CCl ₂ F ₂	1000	4950	1250	6200	
	1,3-Dichloro-5,5-dimethy lhydantoin	$C_5H_6Cl_2N_2O_2$	-	0.2	-	0.4	
	Dichlorodiphenyltrichloro ethane	$C_{14}H_9Cl_2$	-	1		3	
	1, 1-Dichloroethane	CH3CHCl ₂	200	810	400	1620	
	1,2-Dichloroethane	CH ₂ ClCH ₂ Cl	10	40	15	60	
	1,1-Dichloroethylene	CH ₂ =CCl ₂	10	40	13	00	
		C112-CC12	10	40	_	_	
	1,2-Dichloroethylene, cis:trans isomers 60:40	CICH=CHCl	200	790	250	1000	
	Dichlorofluoromethane	CHCl ₂ F	10	40	_	_	
•	2,4-Dichlorophenoxyaceti c acid	C ₆ H ₃ Cl2OCH ₂ COOH	-	10	-	20	
	1,3-Dichloropropene, cis and trans isomers	CHCl=CHCH2Cl	1	5	10	50	Sk
	1,2-Dichlorotetra-fluoroet hane	CCIF ₂ CCIF ₂	1000	7000	1250	8750	
	Dichlorvos (ISO)	(CH ₃ O) ₂ POOCH=CCl ₂	0.1	1	0.3	3	Sk
	Dicyclohexyl phthalate	C6H4.(COOC6H11)2	_	5	_	-	
	Dicyclopentadiene	$C_{10}H_{12}$	5	30			
	Dicyclopenta-dienyliron	$C_{10}H_{10}Fe$		10		20	
	Dieldrin (ISO)	$C_{12}H_8Cl_6O$	_	0.25	_		Sk
	Diethanolamine	$HO(CH_2)_2NH(CH_2)_2O$	3	15		-)K
		H	10		25	7.5	
	Diethylamine	$(C_2H_5)_2NH$	10	30	25	75	G1
	2-Diethylaminoethanol	(C ₂ H ₅) ₂ NCH ₂ CH ₂ OH	10	50	-	-	Sk
	Diethylene glycol	(HOCH ₂ CH ₂) ₂ O	23	100	-	F	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Biochem (UoN), PHD OSI	1 ongoing <u>osh@produc</u>	tivity.co.	<u>ke</u>	_	_	
Diethylene triamine	(NH ₂ CH ₂ CH ₂) ₂ OH	1	4	-	-	Sk
Diethyl ether	$C_2H_5OC_2H_5$	400	1200	500	1500	
Di-(2-ethylhexyl)	C_6H_4 .(COOCH ₂ CH(C_2		5		10	
phthalate	H_5)- C_4H_9) ₂	-	3	_	10	
Diethyl ketone	$C_2H_5COC_2H_5$	200	700	250	875	
Diethyl phthalate	C6H4.(COOC2H5)2	-	5	_	10	
Difluorochloromethane	CHClF ₂	1000	3500	_	_	
Diglycidyl ether (DGE)	(OCH ₂ CHCH ₂) ₂ O	0.1	0.6	_	_	
o-Dihydroxybenzene	$C_6H_4.(OH)$	5	20	_	-	
m-Dihydroxybenzene	$C_6H_4.(OH)_2$	10	45	20	90	
p-Dihydroxybenzene	$C_6H_4.(OH)_2$	-	2	-	4	
1,2-Dihydroxyethane	CH ₂ OHCH ₂ OH	-	-	-	_	
particulate		-	10	_	-	
vapour		-	60	_	125	
Diisobutyl ketone	[(CH ₃) ₂ CHCH ₂] ₂ CO	25	150	-	_	
D" 1 (1 1/1 1)	C ₆ H ₄ [COOCH ₂ CH(CH		_			
Diisobutyl phthalate	3)2]2	-	5	-	-	
Diisodecyl phthalate	$(C_{10}H_{21}CO_2)_2C_6H_4$	_	5	_	_	
Diisononyl phthalate	$C_6H_4.(COOC_9H_{19})_2$	_	5	_	_	
Diisooctyl phthalate	$C_6H_4.(CO_2C_8H_{17})_2$	_	5	_	_	
D., 1 ,	(CH ₃) ₂ CHNHCH(CH ₃)	5	20			CI
Diisopropylamine	2	5	20	-		Sk
Diagram and other	(CH3)2CHOCH(CH3)	250	1050	210	1220	
Diisoppropyl ether	2	250	1050	310	1320	
Di-linear 79 phthalate	$C_6H_4.(COOC_{7-9}H_{15-19})_2$	_	5	_	_	
Dimethoxymethane	$CH_2.(OCH_3)_2$	1000	3100	1250	3880	
NN-Dimethyl-acetamide	$CH_3CON(CH_3)_2$	10	36	20	71	Sk
Dimethylamine	$(CH_3)_2NH$	10	18	_	_	
NN-Dimethylaniline	$C_6H_5N(CH_3)_2$	5	25	10	50	Sk
1,3-Dimethylbutyt	CH ₃ CO ₂ CH(CH ₃)CH ₂	50	300	100	600	ĺ
acetate	CH-(CH ₃) ₂	30	300	100	000	
NN-Dimethyl-ethylamine	$C_2H5.(CH_3)_2N$	10	30	15	45	
Dimethylformamide	$HCON(CH_3)_2$	10	30	20	60	Sk
-		25	150			
2,6-Dimethylheptan-4-one	$[(CH_3)_2CHCH_2]_2CO$	25	150	-	-	
Dimethyl phthalate	$C_6H_4.(COOCH_3)_2$	-	5	_	10	
Dimethyl sulphate	$(CH_3)_2SO_4$.	0.1	0.5	0.1	0.5	Sk
Dinitrobenzene, all		0.15	1	0.5	2	C1-
isomers	$C_6H_4.(NO_2)_2$	0.15	1	0.5	3	Sk
Dinitro-o-cresol	$CH_3C_6H_2.(OH)(NO_2)_2$	_	0.2	_	0.6	Sk
•		•				•

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Biochem (UoN), PHD OSI	n ongoing <u>osn@produc</u>	tivity.co	<u>.ke</u>			
2,4-Dinitrotoluene	$CH_3C_6H_3.(NO_2)_2$	-	1.5	_	5	Sk
Dinonyl phthalate	$C_6H_4.(COOC_9H_{19})_2$	-	5	_	_	
Di saa aatvil phthalata	$C_6H_4[COOCH_2CH(C_2)]$		5		10	
Di-sec-octy1 phthalate	H_5)- C_4H_9] ₂		5	_	10	
1,4-Dioxane, tech. grade	OCH ₂ CH ₂ OCH ₂ CH ₂	25	90	100	360	Sk
Dioxathion (ISO)	$C_{12}H_{26}O_6P_2S_2$		0.2	_	_	Sk
Diphenyl	$(C_6H_5)_2$	0.2	1.5	0.6	4	
Diphenylamine	$(C_6H_5)_2NH$		10	_	20	
Diphenyl ether (vapour)	$C_6H_5OC_6H_5$	1	7		_	
Diphosphorus		ı	Į.	Ţ	1	1 1
pentasulphide	P_2S_5	-	1	-	3	
Dipotassium						
peroxodisulphate	$K_2S_2O_8$	_	1	_	_	
measured as	1120200		-			
(s.c.)		Î				
Diquat dibromide (ISO)	$C_{12}H_{12}Br_2N_2$	_	0.5		1	
Disodium disulphite	$Na_2S_2O_5$	_	5	_	_	
Disodium	11425205					
peroxodisulphate	$Na_2S_2O_8$		1			
(measured as (S2O8)	11425208		1			
Disodium tetraborate,						
anhydrous	$Na_2B_4O_7$		1			
decahydrate	Na ₂ B ₄ O ₇ Na ₂ B ₄ O ₇ .10H ₂ O		5	_		
pentahydrate	Na _{2B4} O _{7.} 10H ₂ O	_	1	_	_	
pentanydrate		_	1	_	_	
Disulfoton (ISO)	(C ₂ H2O) ₂ PSCH ₂ CH ₂ S		0.1	_	0.3	
Disulahua diahlasida	C_2H_5			1	6	
Disulphur dichloride	S_2Cl_5	0.025	0.25	0.075	6	
Disulphur decafluoride	S_2F_{10}	0.025	0.25	0.075	0.75	
2 6 Div. di 1 4 1			10			
2,6-Ditertiary-butyl-parac	$(C_4H_9)_2CH_3C_6.H_2OH$	-	10	-	-	
resol	CH CINO		10			
Diuron (ISO)	$C_9H_{10}Cl_2N_2O$	-	10	_	_	
Divanadium pentaoxide	V_2O_6					
(as v)	2 0					
total inhalable dust		-	0.5	-	-	
fume and respirable dust		-	0.05	-	-	
Divinylbenzene	$C_8H_4.(CHCH_2)_2$	10	50	-	-	
Emery						
total inhalable dust		-	10	-	-	
respirable dust		-	5	-	-	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

	Biochem (UoN), PHD OSI		tivity.co		•		
	Endosulfan (ISO)	C ₉ H ₆ Cl ₆ O3S	_	0.1	-	0.3	Sk
	Endrin (ISO)	C1 ₂ H ₈ Cl ₆ O	-	0.1	-	0.3	Sk
	Enflurane	CHFCl-CF ₂ -O-CF ₂ H	20	150	-	-	
	EpichJorohydrin	OCH ₂ CHCH ₂ Cl	2	8	5	20	Sk
	1,2-Epoxy-4-epoxyethyl-	$C_8H_{12}O_2$	10	60	-	-	
	cyclohexane						
	2,3-Epoxypropyl	C ₃ H ₇ OCH ₂ CHCH ₂ O	50	240	75	360	
	isopropyl ether		30	240	13	300	
	Ethane- 1 ,2-diol	CH ₂ OHCH ₂ OH					
	particulate		-	10	-		
	vapour		-	60	_	125	
	Ethanethiol	C_2H_5SH	0.5	1	2	3	
	Ethanol	C_2H_5OH	1000	1900	-	-	
	Ethanolamine	NH ₂ CH ₂ CH ₂ OH	3	8	500	1500	
	Ether	$C_2H_5OC_2H_5$	400	1200	-	-	
	Ethyl acetate	CH ₃ COOC ₂ H ₅	400	1400	_	-	
	Ethyl acrylate	CH ₂ =CHCOOC ₂ H ₅	5	20	15	60	Sk
	Ethyl alcohol	C ₂ H ₅ OH	1000	1900	_	-	
	Ethylamine	$C_2H_5NH_2$	10	18	_		
	Ethyl amyl katana	CH ₃ CH ₂ COHCH ₂ CH ₃	25	130			
	Ethyl amyl ketone	CHCH ₂ CH ₃	23	130	_	-	
	Ethylbenzene	$C_6H_5C_2H_5$	100	435	-	545	
	Ethyl bromide	C_2H_5Br	200	890	-	1110	
	Ethyl butyt ketone	CH ₃ CH ₂ COH(CH ₂) ₃ C	50	230	75	345	
	Ethyl butyt ketone	H_3	30	230	13	343	
	Ethyl chloride	C_2H_5Cl	1000	2600	-	3250	
	Ethyl chloroformate	ClCO ₂ C ₂ H ₅	1	4.4	1		
	Ethylene chlorohydrin	ClCH ₂ CH ₂ OH		-		3	Sk
	Ethylenediamine	NH ₂ CH ₂ CH ₂ NH ₂	10	25			
	Ethylene dibromide	BrCH ₂ CH ₂ Br	0.5	4			Sk
	Ethylene dichloride	CH ₂ ClCH ₂ Cl	10	40	15	60	
	Ethylene dinitrate	CH ₂ NO ₃ CH ₂ NO ₃	0.2	1.2	0.2	1.2	Sk
	Ethylene glycol	CH ₂ OHCH ₂ OH					
	particulate		-	10	-	_	
	vapour		_	60	_	125	
	Ethylene glycol dinitrate (EGDN)	CH NO CH NO	0.2	1.0	0.0	1.0	C1
	(EGDN)	CH2NU3CH2NU3	0.2	1.2	0.2	1.2	Sk
	Ethylene glycol	C ₄ H ₉ OCH ₂ CH ₂ OH	25	120			C1-
	monobutyl ether	C4H9UCH2CH2UH	25	120	-	-	Sk
•	•	•	•	•	•	•	•

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc

Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Biochem (UoN), PHD OSI	H ongoing <u>osh@produc</u>	tivity.co.	<u>.ke</u>	i	Ť	i
Ethylene glycol	C ₂ H ₅ OH ₂ CH ₂ OH	10	37	_	_	Sk
monoculy culci			,			
	C ₂ H ₅ OCH ₂ CH ₂ OOCC	10	54	_	_	Sk
monoethyl ether acetate	H_3					OK .
	CH ₃ COOCH ₂ CH ₂ OCH	5	24			Sk
monomethyl ether acetate			2 '			OK .
Ethylene glycol	CH ₃ OCH ₂ CH ₂ OH	5	16			Sk
monomethyl ether						
Ethyleneimine	CH ₂ CH ₂ NH	0.5	1	-	-	Sk
Ethylene oxide	CH ₂ CH ₂ O	5	10	-	-	
Ethyl ether	$C_2H_5OC_2H_5$	400	1200	500	1500	
Ethyl formate	HCOOC ₂ H ₅	100	300	150	450	
2-Ethylhexyl	CICO ₂ CH ₂ CH(CH ₂) ₃ C	$ _{1}$	7.9			
chloroformate	H_3 C_2H_5			_		
Ethylidene dichloride	CH ₃ CHCl ₂	200	810	400	1620	
Ethyl mercaptan	C_2H_5SH	0.5	1	2	3	
4-Ethylmorpholine	$C_6H_{13}NO$	5	23	20	95	Sk
Ethyl silicate	$Si(OC_2H_5)_4$	10	85	30	255	
Fenchlorphos (ISO)	(CH ₃ O) ₂ PSOC ₆ H ₂ Cl ₃	-	10	-	-	
Fernam (ISO)	[(CH ₃) ₂ NCSS] ₃ Fe		10	-	20	
Ferrocene	$C_{10}H_{10}Fe$	-	10	-	20	
Fluoride (as F)	F	-	2.5	-	-	
Fluorine	F_2	-	_	1	1.5	
Fluorodichloromethane	CHCl ₂ F	10	40	-	-	
Fluorotrichloromethane	CCl ₃ F	1000	5600	1250	7000	
Formamide	HCONH ₂	20	30	30	45	
Formic acid	НСООН	5	9	-	-	
2-Furaldehyde (Furfural)	$C_5H_4O_2$	2	8	10	40	Sk
Emfamil alaahal	OCH=CHCH=CCH ₂ O	5	20	1.5	60	Sk
Furfuryl alcohol	Н	3	20	15	60	SK
Germane	GeH ₄	0.2	0.6	0.6	1.8	
Germanium tetrahydride	GeH ₄	0.2	0.6	0.6	1.8	
Glutaraldehyde	OCH(CH ₂) ₃ CHO		_	0.2	0.7	
Glycerol, mist	CH ₂ OHCHOHCH ₂ OH	_	10	_	_	
•	CH ₂ NO ₃ CHNO ₃ CH ₂ N	0.2		0.2		CI
Glycerol trinitrate	O_3	0.2	2	0.2	2	Sk
Glycol monoethyl ether	C ₂ H ₅ OCH ₂ CH ₂ OH	10	37	0.2	2	
Graphite	C					
total inhalable dust			10	-	<u> </u>	
respirable dust		_	5	-	_	
. *	•	•	•	•	•	•

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

blochem (OoN), FID OSI		tivity.co.	<u>.Ke</u>	1	Ī	
Guthion	$(CH_3O)_2PSSCH_2.(C_7H)$	_	0.2	0.6	_	Sk
	$_4N_3O)$		0.2	0.0		OK
Gypsum	CaSO ₄ .2H ₂ O					
total inhalable dust			10	-	-	
respirable dust		_	5	-	-	
Halothane	CHBrCl-CF ₃	10	80	-	-	
y-HCH (ISO)	$C_6H_5Cl_6$	-	0.5	-		Sk
Hafnium	Hf	-	0.5	-	1.5	
Heptachlor	$C_{10}H_5Cl_7$	_	0.5	-		Sk
n-Heptane	C_7H_{16}	400	1600	500	2000	
Heptane-2-one	$CH_3.(CH_2)_4COCH_3$	50	240	-	-	
Heptan-3-one	CH ₃ CH ₂ CO(CH ₂) ₃ CH ₃	50	230	75	345	
y-Hexachlorocyc1o-hexan	$C_6H_5Cl_6$	_	0.5	-	1.5	
e						
Hexachloroethane	CCl ₃ CCl ₃	•				
vapour		5	50	-	-	
total inhalable dust		_	10	-	_	
respirable dust		_	5	-	-	
Hexahydro-1,3,5-	$C_3H_6N_6O_6$	_	1.5	_	3	Sk
trinilro-1,3,5-triazine						
Hexane, all isomers	CII	500	1000	1000	2600	
except	C_6H_{14}	500	1800	1000	3600	
n-Hexane						
n-Hexane	C_6H_{14}	20	70	_	_	
1,6 Hexanolactam	NH(CH ₂) ₅ CO					
dust		_	1	-	3	
vapour		5	20	10	40	
Hexan-2-one	CH ₃ .(CH ₂) ₃ COCH ₃	5	20	-	_	Sk
Hexone	(CH ₃) ₂ CHCH ₂ COCH ₃	50	205	75	300	Sk
	(CH ₃) ₂ COHCH ₂ CHOH			25	105	
Hexylene glycol	CH ₃	25	125	25	125	
Hydrazine	NH_2NH_2	0.1	0.1	_	_	Sk
Hydrazoic acid (as	NH ₃			0.4		
vapour)	NH_3	-	_	0.1	-	
Hydrogen bromide	HBr	_	_	3	10	
Hydrogen chloride	HCl	_	_	5	7	
Hydrogenfluoride (as F)	HF	_	_	3	2.5	
Hydrogen peroxide	H_2O_2	1	1.5		3	
J J J J J J J	2 - 2	ı –	1	_	-	ı l

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Biochem (UoN), PHD OSI	H ongoing <u>osh@produc</u>	<u>tivity.co.</u>	<u>.ke</u>	•		
Hydrogen selenide (as	H ₂ Se	0.05	0.2			
Se)	11250	0.03	0.2		_	
Hydrogen sulphide	H_2S	10	14	15	21	
Hydroquinone	$C_6H_4.(OH)_2$	-	2	-	4	
4-Hydroxy-4-methyl-pent	$CH_3COCH_2C(CH_3)_2O$	50	240	75	360	
an-2-one	Н	30	240	13	300	
2-Hydroxypropyl acrylate	CH ₂ CHOOCH ₂ CHOH CH ₃	0.5	3	_	-	Sk
2,2'-lminodiethanol	HO(CH2,)2,NH(CH2) 2OH	3	15	_	-	
2,2'-lminodi (ethylamine)	,	1	4	-		Sk
Indene	C_9H_8	10	45	15	70	
Indium & compounds (as	In		0.1		0.3	
In)	111		0.1			
Iodine	I_2	-	-	0.1	1	
Iodoform	CHl ₃	0.6	10	1	20	
lodomethane	CH ₃ l	5	28	10		Sk
Iron oxide, fume (a Fe)	Fe ₂ O3	-	5	-	10	
Iron pentacarbonyl	FE(CO) ₅	0.01	0.08	-	-	
Iron salts (as Fe)	Fe		1		2	
Isoamyl acetate	CH ₃ COOCH ₂ CH ₂ CH(CH ₃) ₂	100	525	125	655	
Isoamyl alcohol	(CH ₃) ₂ CHCH ₂ CH ₂ OH	100	360	125	450	
Isoamyl methyl ketone	CH ₃ COCH ₂ CH ₂ CH(C H ₃) ₂	50	240	75	360	
Isobutyl acetate	CH ₃ COOCH ₂ CH(CH ₃)	150	700	187	875	
Isobutyl alcohol	(CH ₃) ₂ CHCH ₂ OH	50	150	75	225	
Isobutyl methyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	50	205	75	300	Sk
Isoflurane	CF ₃ -CHCl-O-CHF ₂	50	380		-	
lsooctyl alcohol (mixed isomers)	C ₈ H ₁₇ OH	50	270	_	-	
Isopentyl acetate	CH ₃ COOCH ₂ CH ₂ CH(CH ₃) ₂	100	525	125	655	
Isophorone	$C_9H_{14}O$		_	5	25	
lsophorone diisocyanate	-		0.2		0.07	Corr
(IPDI)		-	0.2	_	0.07	San
Isopropyl acetate	CH ₃ COOCH(CH ₃) ₂	_	_	200	840	
Isopropyl alcohol	(CH ₃) ₂ CHOH	400	980	500	1225	Sk
Isopropyl benzene	$C_6H_5CH(CH_2)_2$	25	120	75	370	Sk
	•	•	•	•	₹ ¹	= ∙

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Biochem (UoN), PHD OSI		tivity.co				
Isopropyl chlorofonnate	$ClCO_2CH(CH_3)_2$	1	5	_	_	
Isopropyl ether	$(CH_3)_2CHOCH(CH_3)_2$	250	1050	310	1320	
Isopropyl ether Isopropyl glycidyl ether (IGE)	C.H.OCH.CHCH.	50	240	75	360	
(102)						
Ketene	CH ₂ =CO	0.5	0.9	1.5	3	
Limestone						
total inhalable dust		-	10	_	-	
respirable dust		-	5	-	-	
Lindane	$C_6H_5Cl_6$	-	0.5	_	1.9	Sk
Liquified petroleum gas	Mixture:					
(LPG)	$C_3H_6;C_3H_8;C_4H_8;C_4H_1$	1000	1800	1250	2250	
	0					
Lithium hydride	LiH	-	0.025	-	-	
Lithium hydroxide	LiOH	-	-	-	1	
MbOCA	$CH_2.(C_6H_3CINH_2)_2$	-	0.005	-	-	Sk
MDA	H ₂ NC ₆ H ₄ CH ₂ C ₆ H ₄ NH	0.1	0.8	0.5	4	
	2	0.1	0.0	0.0		
MDI						
Magnesite						
total inhalable dust		-	10	-	_	
respirable dust		-	5	-	_	
Magnesium oxide (as	MgO					
Mg)	111280					
fume and respirable dust		-	5	-	10	
respirable dust		-	10	-		
Malathion (ISO)	$C_{10}H_{19}O_6PS_2$	-	10	-	-	Sk
Maleic anhydride	$C_4H_2O_3$	0.25	1	_	-	
Manganese, fume (as	Mn	_	1	_	3	
Mn)	14111		1			
Manganese and	Mn	_	5	_	_	
compounds (as Mn)	1.22					
Manganese						
cyclopentadienyl	C_5HC_5 -MN(CO) ₃	-	0.1	-	0.3	Sk
tricarbonyl						
Manganese tetroxide	Mn_3O_4	-	1	_	-	
oMan made mineral fibre	See Annexure 3					
Marble						
total inhalable dust		-	10	-	-	
respirable dust		-	5	_	-	
Mequinol (INN)	CH ₃ OC ₆ H ₄ OH	-	5	-	-	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Biochem (UoN), PHD OSI	1 ongoing <u>osh@produc</u>	<u>tivity.co.</u>	<u>ke</u>			
Mercaptoacetic acid	$C_2H_4O_2S$	1	5	-	_	
Mercury alkyls (as Hg)		-	0.01	-	0.03	Sk
Mercury & compounds,						
except mercury alkyls,	Hg	-	0.05	-	0.15	
(as Hg)						
Mesityl oxide	$CH_3COCH=C(CH_3)_2$	15	60	25	100	
Methacrylic acid	CH ₂ =C(CH ₃)COOH	20	70	40	140	
Methacrylonitrile	$CH_2=C(CH_3)CN$	1	3	-	_	Sk
Methanethiol	CH ₃ SH	0.5	1	_	_	
Methanol	CH ₃ OH	200	260	250	310	Sk
Methomyl (ISO)	$C_5H_{10}N_2O_2S$	-	2.5	_	_	Sk
Methoxychlor (ISO)	$C_{16}H_{15}Cl_3O_2$	-	10	-	-	
1-Methoxypropan-2-ol	CH ₃ OCH ₂ CHOHCH ₃	100	360	300	1080	Sk
Methyl acetate	CH ₃ COOCH ₃	200	610	250	760	
Methyl acrylate	CH ₂ =CHCOOCH ₃	10	35	-	-	
Methylal	$CH_2.(OCH_3)_2$	1000	3100		3880	
Methyl alcohol	CH ₃ OH	200	260	250	310	Sk
Methylamine	CH ₃ NH ₂	10	12	-	_	
Methyl-n-amyl-ketone	CH ₃ .(CH ₂)4COCH ₃	50	240	-	-	
N-Methylaniline	C ₆ H ₅ NHCH ₃	0.5	2	_	_	Sk
Methyl bromide	CH ₃ Br	5	20	15	60	Sk
3-Methylbutan-1-ol	(CH ₃) ₂ CHCH ₂ CH ₂ OH	100	360	125	450	
1 Mathylhutyl agetete	CH ₃ COOCH(CH ₃)C ₃ H			150	800	
1-Methylbutyl acetate	7	-	-	130	800	
Methyl-n-butyl ketone	CH ₃ .(CH ₂) ₃ COCH ₃	5	20	-	_	Sk
Methyl chloride	CH ₃ Cl	50	105	100	210	
Methyl chloroform	CH ₃ CCl ₃	350	1900	450	2450	
Methyl 2-cyanoacrylate	CH ₂ =C(CN)COOCH ₃	2	8	4	16	
Methylcyclohexane	C_7H_{14}	400	1600	500	2000	
Methylcyclohexanol	CH ₃ C ₆ H ₁₀ OH	50	235	75	350	
2-Methylcyclcrhexanone	CH ₃ CHCO(CH ₂)3CH ₂	50	230	75	345	Sk
Methylcyclo-pentadienyl	$C_5HC_5-Mn(CO)_3$	-	0.1	_	0.6	Sk
Manganese, tricarbonyl	$(CH_3)C_5H_4$ -Mn $(CO)_3$					
(as Mn)	$(CH_3)C_5H_4$ -WIII(CO) ₃					
2-Methyl-4,6-dinitropheno	$CH_3C_6H2.(OH)(NO_2)_2$	-	0.2	-	0.6	Sk
1						
4,4' -Methylenebis-2-	$CH_2.(C_6H_3CINH_2)_2$	_	0.005	_	_	Sk
chloroaniline) (MbOCA)						
Methylene chloride	CH ₂ Cl ₂	100	350	250	780	
						•

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc

Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke								
4,4' -Methylene-diphenyl		-	0.02	_	0.07	Sen		
diisocyanate (MDI)								
4,4'-Methylene-	H ₂ NC ₆ H ₄ CH ₂ C ₆ H ₄ NH	0.1	0.8	0.5	4			
dianiline (MDA)	2	0.1	0.8	0.5	4			
Methyl ethyl ketone	CH ₃ COC ₂ H ₅	200	590	300	885			
(MEK)	CH3COC2H5	200	390	300	003			
Methyl ethyl ketone				0.2	1.5			
peroxides (MEKP)	$C_8H_{16}O_4$ or $C_8H_{18}O_6$.			0.2	1.3			
Methyl formate	HCOOCH ₃	100	250	150	375			
5 Mathylhanton 2 and	CH ₃ CH ₂ COCH ₂ CH ₃ -C	25	130					
5-Methylheptan-3-one	HCH ₂ CH ₃	23	130	_	-			
5 Mathyllhayan 2 and	CH ₃ COCH ₂ CH ₂ CH ₂ .(50	240	75	260			
5-Methylhexan-2-one	CH ₃) ₂	30	240	75	360			
Methyl iodide	CH ₃ l	5	28	10	56	Sk		
Mathyl ico amyl katona	CH ₃ COCH ₂ CH ₂ CH(C	50	240	75	260			
Methyl isoamyl ketone	$H_3)_2$	30	240	75	360			
Mathyliachutyl carbinal	CH ₃ CHOHCH ₂ CH(C	25	100	40	160	Sk		
Methyl isobutyl carbinol	$H_3)_2$	23	100	40	100	SK		
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	50	205	75	300	Sk		
(MIBK)	$(Cn_3)_2CnCn_2COCn_3$	30	205	13	300	SK		
Methyl isocyanate		-	0.02	-	0.07	Sen		
Methyl mercaptan	CH ₃ SH	0.5	1	-				
Methyl methacrylate	CH ₂ =C(CH ₃)COOCH ₃	100	410	125	510			
Methyl parathion	C ₈ H ₁₀ NO ₅ PS	-	0.2	_	0.6	Sk		
2 Mathylmantana 2 4 dial	(CH ₃) ₂ COHCH ₂ CHO	25	125	25	125			
2-Methylpentane-2,4-diol	HCH ₃	23	123	23	123			
4-Methylpentan-2-ol	CH ₃ CHOHCH ₂ CH(C	25	100	40	160	Sk		
4-Methylpentan-2-01	$H_3)_2$	23	100	40	100	SK		
4-Methylpentan-2-one	(CH ₃) ₂ CHCH ₂ COCH ₃	50	205	75	300	Sk		
	CH ₃ COCH=C(CH ₃) ₂	15	60	25	100			
4-Methylpent-3-and-2-one	C113COC11=C(C113)2	13	00	23	100			
4-Methyl-m-phenylene		_	0.02		0.07	Sen		
diisocyanate								
2-Methylpropan-1-o1	(CH ₃) ₂ CHCH ₂ OH	50	150	75	225			
2-Methylpropan-2-o1	(CH ₃) ₃ COH	100	300	150	450			
Methyl propyl ketone	CH ₃ COC ₃ H ₇	200	700	250	875			
1-Methyl-2-pyrrolidone	CH ₃ N(CH ₂) ₃ CO	100	400	-	_			
Methyl silicate	(CH ₃ O) ₄ Si	1	6	5	30			
a-Methylstyrene	$C_6H_5C(CH_3)=CH_2$	-	-	100	480			
Methylstyrenes, all	CH ₃ C ₆ H ₄ CH=CH ₂	100	480	150	720			

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc

Biochem (UoN), PHD OSI	H ongoing <u>osh@produc</u>	ctivity.co	<u>.ke</u>			
isomers						
except a-methylstyrene						
N-Methyl-N,	(NO ₂) ₃ C ₆ H ₂ N(NO ₂)C H ₃	-	1.5	-	3	Sk
2,4,6-tetranitroaniline Mevinphos (ISO)	$C_7H_{13}O_6P$	0.01	0.1	0.03	0.3	Sk
Mica			10			
total inhalable dust		-	10			
respirable dust		_	1		-	
Molybdenum compounds (as Mo)	Мо					
soluble compounds			5		10	
insoluble compounds		-	10	-	20	
Monochloroacetic acid	ClCH ₂ CO ₂ H	0.3	1	-	-	Sk
Morpholine	C_4H_9NO	20	70	30	105	Sk
Naled (ISO)	$C_4H_7Br_2Cl_2O_4P$	-	3	-	6	
Naphtalene	$C_{10}H_{8}$	10	50	15	75	
1,5-Naphtylene			0,02		0.07	Sen
diisocyanate			0,02		0.07	SCII
Nickel carbonyl	Ni(CO) ₄	-	-	0.1	0.24	
Nickel, organic	Ni		1		3	
compounds (as Ni)	111	_	1		3	
Nicotine	$C_{10}H_{14}N_2$	-	0.5	_	1.5	Sk
Nitrapyrin	C ₆ H ₃ CI ₄ N	-	10	_	20	
Nitric acid	HNO ₃	2	5	4	10	
Nitric oxide	NO	25	30	35	45	
4-Nitroaniline	$NO_2C_6H_4NH_2$	-	6	-	-	Sk
Nitrobenzene	$C_6H_5NO_2$	1	5	2	10	Sk
Nitromethane	$C_2H_5NO_2$	100	310	-	-	
Nitrogen dioxide	NO_2	3	5	5	9	
Nitrogen monoxide	NO	25	30	35	45	
Nitrogen trifluoride	NF ₃	10	30	15	45	
Nitroglycerine	CH ₂ NO ₂ CHNO ₃ CH ₂ N O ₃	0.2	2	0.2	2	Sk
Nitromethane	CH ₃ NO ₂	100	250	150	375	
1-Nitropropane	$C_3H_7NO_2$	25	90	_	_	
2-Nitropropane	CH ₃ CH(NO ₂)CH ₃	10	36	20	72	
Nitrotoluene, all isomers	CH ₃ C ₆ H ₄ NO ₂	5	30	10	60	Sk
Nitrous oxide	N_2O	100	180	-	_	
Octachloronaphtalene	$C_{10}CI_8$	-	0.1	-	0.3	Sk

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN). PHD OSH ongoing osh@productivity.co.ke

Biochem (UoN), PHD OSI	A ongoing <u>osh@produc</u>		<u>ke</u>	-		
n-Octane	CH3.(CH ₂) ₆ CH ₃	300	1450	375	1800	
Orthophosphoric acid	H_3PO_4	_	1	_	3	
Osmium tetraoxide (as	OsO ₄	0.0002	0.000	0.0006	0.0006	
Os)		0.0002	2	0.0000		
Oxalic acid	СООНСООН	_	1	_	2	
Oxalonilrile	$(CN)_2$	10	20	_	-	
2,2'-Oxydiethanol	(HOCH ₂ CH ₂) ₂ O	23	100	_	_	
Ozone	O_3	0.1	0.2	0.3	0.6	
PCBs						
Chlorinated biphenyls	$C_{12}H_7C1_3$ (approx)		1		2	Sk
(42% chlorine)			1	_	2	SK.
Chlorinated biphenyls	C ₆ H2Cl ₃ C ₆ H ₃ Cl ₂		0.5		1	Sk
(54% chlorine)	C6112C13 C6113C12		0.5	_	1	SK.
Paraffin wax, fume		_	2	_	6	
Paraquat dichloride (ISO)	$[CH_3.(C_5H_4N_+)_2CH_3]$					
respirable dust	(Cl- ₂)	_	0.1	-	_	
Parathion (ISO)	$(C_2H_5O)_2PSOC_6H_4NO$		0.1		0.3	Sk
1 aratmon (150)	2	_				
Parathion-methyl (ISO)	$C_8H_{10}NO_5PS$	_	0.2	_	0.6	Sk
Pentacarbonyliron (as Fe)	FE(CO) ₅	0.01	0.08	_	_	
Pentachlorophenol	C ₆ Cl ₅ OH	_	0.5	_	1.5	Sk
Pentaerythritol	$C(CH_2OH)_4$					
total inhalable dust		_	10	_	20	
respirable dus1		_	5	_	-	
Pentane, all isomers	C_5H_{12}	600	1800	750	2250	
Pentan-2-one	CH ₃ COC ₃ H ₇	200	700	250	875	
Pentan-3-one	$C_2H_5COC_2H_5$	200	700	250	875	
Pentyl acetate	CH ₃ COOC ₅ H ₁₁	100	530	150	800	
Perchloroethylene	CCl=CCl ₂	50	335	150	1000	
Perchloryl fluoride	ClO ₃ F	3	14	6	28	
Phenacy1 chloride	C ₆ H ₅ COCH ₂ Cl	0.05	0.3	-	-	
Phenol	C_6H_5OH	5	19	10	38	Sk
p-Phenytenediamine	$C_6H_4.(NH_2)_2$	_	0.1	-	-	Sk
Phenyl-2,3-	C ₆ H ₅ OCH ₂ CHCH ₂	1	6	-	-	
epoxypropyt ether						
	O					
Phenytethylene	$C_6H_5CH=CH_2$	100	420	250	1050	
Phenythydrazine	C ₆ H ₅ NHNH ₂	5	20	10	45	Sk
2-Phenytpropene	$C_6H_5C(CH_3)=CH_2$	_	-	100	480	
Phorate (ISO)	$C_7H_{17}O_2PS_3$	 -	0.05		0.2	Sk

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

prochem (Ooly), rnd Ost	i ongoing <u>osit@produc</u>					
Phosdrin	$C_7H_{13}O_6P$	0.01	0.1	0.03	0.3	Sk
Phosgene	COCl ₂	0.1	0.4	-	-	
Phosphine	PH_3	_	-	0.3	0.4	
Phosphorus, yellow	P4	_	0.1	-	0.3	
Phosphorus pentachloride	PCl ₅	0.1	1	_	-	
Phosphorus	P_2S_5		1	_	3	
pentasulphide			1			
Phosphorus trichloride	PCl ₃	0.2	1.5	0.5	3	
Phosporyt trichloride	POCl ₃	0.2	1.2	0.6	3.6	
Phthalic anhydride	$C_6H_4.(CO)_2O$	1	6	4	24	Sen
Picloram (ISO)	$C_6H_3Cl_3N_2O_2$	_	10	-	20	
Picric acid	$HOC_6H_2.(NO_2)_3$	_	0.1	_	0.3	Sk
Piperazine	CH N 2HCl		5			
dihydrochloride	$C_4H_{10}N_2.2HCl$	_	3	_	_	
Piperidine	$C_5H_{11}N$	1	3.5	-	-	Sk
Plas1er of Paris	(CaSO ₄) ₂ .H ₂ O					
total inhalable dust		_	10	_	_	
respirable dust		_	5	_	_	
Platinum metal	Pt	_	5	-		
Platinum salts, soluble (as	Pt		0.002			Com
PI)	Pt	_	0.002	_	_	Sen
Polychlorinated biphenyts	C DCD!-					
(PCBs)	See PCB's					
Polyvinyt chloride (PVC)						
total inhalable dus1		_	10	_	-	
respirable dust		-	5	_	_	
Portland Cement						
total inhalable dus1		_	10	_	_	
respirable dust		_	5	_	_	
Potassium hydroxide	КОН	_	_	_	2	
Propane-1,2-diol	CH ₃ CHOHCH ₂ OH					
total (vapour and	_	1.50	470			
particulates)		150	470		_	
particulates		_	10	_	_	
n-Propanol	CH ₃ CH ₂ CH ₂ OH	200	500	250	625	Sk
Propan-1-o1	CH ₃ CH ₂ CH ₂ OH	200	500	250		Sk
Propan-2-o1	(CH ₃) ₂ CHOH	400	980	500		Sk
Propargyl alcohol	HC=CCH ₂ OH	1	2	3		Sk
Propionic acid	CH ₃ CH ₂ COOH	10	30	15	45	
1 1		ı	1	ı		ı

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Biochem (UoN), PHD OSI	H ongoing <u>osn@produc</u>	tivity.co.	<u>.ke</u>			
Propoxur (ISO)	H ₃ CNHCOOC ₆ H ₄ OC H-(CH ₃) ₂	_	0.5		2	
n-Propyl acetate	CH ₃ COOC ₃ H ₇	200	840	250	1050	
Propylene dinitrate	CH ₂ NO ₃ CHNO ₃ CH ₃	0.2	1.2	0.2		Sk
Propylene glycol	CH ₃ CHOHCH ₂ OH					
total (vapour and	-	1.50	470			
particulates)		150	470	_	-	
particulates		-	10	_	_	
Propytene glycol dinitrate	CH NO CHNO CH	0.2	1.0	0.2	1.2	C1-
(PGDN)	CH ₂ NO ₃ CHNO ₃ CH ₃	0.2	1.2	0.2	1.2	Sk
Propylene glycol	CH ₃ OCH ₂ CHOHCH ₃	100	360	300	1080	Sk
monomethyl ether	Cn ₃ OCn ₂ CnOnCn ₃	100	300	300	1080	SK
Prop-2-yn-1-o1	HC=CCH ₂ OH	1	2	3	6	Sk
Pulverised Fuel Ash						
total inhalable dus1	-	10	-	-	-	
respirable dust	-	5	-	-	-	
Pyrethrins (ISO)	-	5	-	10	-	
Pyridine	C_5H_5N	5	15	10	30	
2-Pyridytamine	$NH_2C_5H_4N$	0.5	2	2	8	
Pyrocatechol	$C_6H_4.(OH)_2$	5	20	-	-	
Quartz, crystalline	SiO_2					
respirable dust		-	0.4	-	-	
Quinone	$C_6H_4O_2$	0.1	0.4	0.3	1.2	
RDX	$C_3H_6N_6O_6$	-	1.5	-		Sk
Resorcinol	$C_6H_4.(OH)_2$	10	45	20	90	
Rhodium (as Rh),	Rh					
metal fume and dust		-	0.1	-	0.3	
soluble salts		-	0.001	<u> </u>	0.003	
Ronnel	$(CH_3O)_2PSOC_6H_2Cl_3$	-	10	-	-	
Rosin core solder		_	0.1	_	0.3	Sen
pyrolysis			0.1		0.5	John
products as formaldehyde						
Rotenone (ISO)	$C_{23}H_{22}O_6$.	-	5	-	10	
Rouge						
total inhalable dust		-	10	-	-	
respirable dust		-	5	-	-	
Selenium and	Se	_	0.1	_	_	
compounds,						
except hydrogen selenide						
(asSe)		1				

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Diochem (Ooly), r nd Osi	i ongoing <u>osit@produc</u>			-		_
Silane	SiH ₄	0.5	0.7	1	1.5	
Silica, amorphous	SiO_2					
total inhalable dust		-	6	-	-	
respirable dust		_	3	_	-	
Silica, fused	SiO_2					
respirable dust	_	-	0.1	_	_	
Silicon	Si					
total inhalable dust		_	10	_	_	
respirable dust		_	5	_	_	
Silicon carbide	SiC					
total inhalable dust		_	10	_	_	
respirable dust		_	5	_	_	
Silicon tetrahydride	SiH ₄	0.5	0.7	1	1.5	
Silver	Ag	_	0.1	_	-	
Silver compounds (as						
Ag)	Ag	-	0.01	-	-	
Sodium azide	NaN ₃		_		0.3	
Sodium	114113				0.5	
2-(2,4-dichloro-phenoxy)	C ₈ H ₇ Cl ₂ NaO ₅ S	_	10	L	20	
ethyl sulphate	C811/C121140555				20	
Sodium fluoroacetate	CH ₂ FCOONa		0.05	L	0.15	Sk
Sodium	C1121 COOT4a				0.13	OK.
hydrogen-sulphite	NaHSO ₃	-	5	-	-	
Sodium hydroxide	NaOH				2	
Sodium metabisulphate	$Na_2S_2O_5$		5	_	2	
Starch	1\\a_2\S_2\O_5]	_	_	
total inhalable dust			10			
			5	_	_	
respirable dust Stibine	Chu	0.1	0.5	0.3	- 1.5	
	SbH ₃	0.1		0.3		
Strychnine	$C_{21}H_{22}N_2O_2$	100	0.15	250	0.45	
Styrene	$C_6H_5CH=CH_2$	100	420	250	1050	
Subtilisins (Proteolytic						
enzymes as 100% pure			0.000		0.000	
crystalline enzyme)		_	0.000	_	0.0000	
			06		6	
Sucrose	$C_{12}H_{22}O_{11}$	-	10	_	20	G1
Sulfotep (ISO)	$(C_2H_5)_4P_2S_2O_5$	-	0.2	_	-	Sk
Sulphur dioxide	$ SO_2 $	2	5	5	13	
Sulphur hexafluoride	SF ₆	1000	6000	1250	7500	
Sulphuric acid	H_2SO_4	-	1	-	-	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

		ingoing osite produc	tivity.co.	KC			
Sulphur monochlo		Cl_2	-	-	1	6	•
Sulphur pentachlo		F_{10}	0.025	0.25	0.075	0.75	
Sulphur tetrafluor	ide SF	\mathbb{F}_4	0.1	0.4	0.3	1	
Sulphuryl difluori	de SO	O_2F_2	5	20	10	40	
2.4.5-T (ISO)	C_8	$_{3}H_{5}Cl_{3}O_{3}$	_	10	_	20	
TDI			_	0.02	_	0.07	Sen
TEDP	(C	$(2H_5)_4P_2S_2O_5$	_	0.2	_		Sk
TEPP (ISO)		$(2H_5)_4P_2O_7$	0.004	0.05	0.01	0.2	Sk
TNT		$H_3C_6H_2.(NO_2)_3$	_	0.5	_	_	Sk
Talc		5 0 2 \ 2/5					
total inhalable dus	st			10	_	_	
respirable dust			_	1	_	_	
Tantalum	Ta	ı	_	5	_	10	
Tellurium & com							
except hydrogen te	-						
ride, (as Te)	Te	2	_	0.1	_	_	
Terphenyls, all iso		$_{18}H_{14}$		_	0.5	5	
1 01 p 110 11 1 1 1 1 1 1 1 1 1 1 1 1 1							
1,1,2,2-Tetrabromo	-ethane CI	HBr ₂ CHBr ₂	0.5	7	-	-	Sk
Tetrabromometha		Br_4	0.1	1.4	0.3	4	
Tetracarbonylnick	el (as	(((0))			0.1	0.24	
Ni)	· N	$i(CO)_4$	-	-	0.1	0.24	
1,1	,1						
,2-Tetrachloro-2,2	-difluor Co	Cl ₃ CCIF ₂	100	834	100	834	
oethane		, <u>-</u>					
1,1 ,2,2- Tetracl	hloro 1	OLECCI E	100	024	100	024	
,2-difluoroethane		Cl ₂ FCCl ₂ F	100	834	100	834	
Tertrachloroethyle	ene Co	Cl=CCl ₂	50	335	150	1000	
Tetrachloromethan		Cl_4	2	12.6		_	Sk
Tetrachloro-							
naphthalenes,		11.01		2		4	
all isomers	C_1	$_{0}H_{4}Cl_{4}$	_	2	_	4	
O,O,O',O'-Telraeth	nyl						
dithiopyrophosph	-	$(2H_5)_4P_2S_2O_5$	_	0.2	_	_	Sk
O,O,O',O'-Tetraet		2 3/1 2 2 3					
pyrophosphate	-	$(2H_5)_4P_2O_7$	0.004	0.05	0.01	0.2	Sk
Tetraethyl orthosi	,	$(OC_2H_5)_4$	10	85	30	255	
Tetrafluorodichlor	o othon	, .					
e	CC	CIF ₂ CCIF ₂	1000	7000	1250	8750	
Tetrahydrofuran	(C	$C_2H_4)_2O$	200	590	250	735	
	·						

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN). PHD OSH ongoing osh@productivity.co.ke

Biochem (UoN), PHD OSI	H ongoing <u>osh@produc</u>	tivity.co.	<u>.ke</u>			
Tetramethyl	(CH ₃ O) ₄ Si	1	6	5	30	
orthosilicate	(C113O)4S1	1	U	3	30	
Tetramethyl	CHN	0.5	3	2	9	Sk
succinonitrile	$C_8H_{12}N_2$	0.5	3	2	9	SK
Tetrasodium	Na ₄ P ₂ O ₇		5			
pyrophosphate	1Na4F 2O7	_	3	_	_	
Tetryl	$(NO_2)_3C_6H_2N(NO_2)C$ H_3	-	1.5	-	3	Sk
Thallium, soluble	TI	_	0.1	-	_	Sk
compounds (as Ti)	CILOS		10		20	
4,4'- Thiobis(6-tert-	$C_{22}H_{30}O_2S$	-	10	-	20	
butyl-m-cresol)	CHOC	1	5			
Thioglycollic acid	C ₂ H ₄ O ₂ S	1	5	1	-	
Thionyt chloride	SOCl ₂	-	-	1	5	
Thiram (ISO)	(CH ₃) ₂ NCS ₂ CS ₂ N(CH ₃) ₂	-	5	-	10	
Tin, compounds,						
inorganic,	Sn	-	2	_	4	
except SnH4, (as Sn)						
Tin compounds, organic,	Sn	-	0.1	-	0.2	Sk
except Cyhexatin (ISO),						
(as Sn)						
Titanium dioxide	TiO ₂					
total inhalable dust		-	10	-	-	
respirable dust		-	5	-	-	
Toluene	$C_6H_5CH_3$	50	188	150	560	Sk
Toluene diisocyanate		_	0.2	_	0.07	Sen
(TDI)			0.2		0.07	Sen
p- Toluenesulphonyt	CH ₃ C ₆ H ₄ SO ₂ Cl	_	_	_	5	
chloride	1	l.	l .	İ	ı	ا مدا
1,4,7-Tri-(aza)-heptane	(NH ₂ CH ₂ CH ₂) ₂ OH	1	4	-	-	Sk
Tribromomethane	CHBr ₃	0.5	5	-	-	Sk
Tributyt phosphate, all	$(C_4H_9)_3PO_4$	_	5	_	5	
isomers	(-4)/3 -4					
Tricarbonyt						
(eta-cyclopentadienyl)						
manganese	(C_5H_5) -Mn(CO) ₃	_	0.1	_	0.3	Sk
(asMn)						I I

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN). PHD OSH ongoing osh@productivity.co.ke

Biochem (UoN), PHD OSI	H ongoing <u>osh@produc</u>	tivity.co	<u>.ke</u>			
Tricarbonyl(methylcyclop						
enta-dienyl) manganese	$(CH_3)C_5H_4$ -Mn (CO_3)	_	0.2	_	0.6	Sk
(as Mn)	(C113)C3114-1VIII(CO3)		0.2		0.0)K
Trichloroacetic acid	CCI₃COOH	1	5	-	-	
1,2,4-Trichlorobenzene	$C_6H_3Cl_3$	5	40	5	40	
1,1,1-Trichlorobis	$C_{14}H_9Cl_5$		1		3	
(chlorophenyt) ethane				-		
1,1,2-Trichloroethane	CH ₂ ClCHCl ₂	10	45	20	90	Sk
Trichlorofluoro-methane	CCl ₃ F	1000	5600	1250	7000	
Trichloromethane	CHCl ₃	2	9.8	-	-	
Trichloronitromethane	CCl ₃ NO ₂	0.1	0.7	0.3	2	
2,4,5-Trichlorophenoxyac	$C_8H_5Cl_3O_3$	_	10	_	20	
etic acid						
1,2,3-Trichloropropane	CH ₂ ClCHClCH ₂ Cl	50	300	75	450	
1,1,2-Trichloro-	CCl ₂ FCCIF ₂	1000	7600	1250	9500	
trifluoroethane	(CH C HAO) D O		0.1		0.3	
Tri-o-cresyl phosphate	$(CH_3C_6H4O)_3P=O$	-	0.1	-	0.3	
Tricydohexyltin hydroxide	$(C_6H_{11})_3SnOH$	_	5	-	10	
Tridymite, respirable dust	SiO_2		0.4			
Triethylamine	$(C_2H_5)_3N$	10	40	15	60	
Trifluorobromo-methane	CF ₃ Br	1000	6100	1200	7300	
Trimanganese tetraoxide	Mn ₃ O ₄	1000	1	1200	7500	
Trimellitic anhydride	$C_9H_4O_5$	_	0.04	_	_	Sen
Trimethylamine	(CH ₃) ₃ N	10	24	15	36	Sen
Trimethylbenzenes, all	, ,					
isomers or mixtures	$C_6H_3.(CH_3)_3$	25	123	-	-	
3,5,5-						
Trimethyl-cydohex-2-enon	$C_9H_{14}O$	_	_	5	25	
e	,					
Trimethyl phosphite	(CH ₃ O) ₃ P	2	10	_	_	
2,4,6-Trinitrophenol	$HOC_6H_2.(NO_2)_3$	_	0.1	-	0.3	Sk
2,4,6-Trinitrotoluene	$CH_3C_6H_2.(NO_2)3$	-	0.5	-	-	Sk
Triphenyt phosphate	$(C_6H_5)_3PO_4$	-	3	-	6	
Tripoli, respirable dust	SiO_2	-	0.4	-	-	
Tri-o-tolyt phosphate	$(CH_3C_6H_4O)_3P=0$	-	0.1	-	0.3	
Tungsten & compounds	$ _{\mathbf{W}}$					
(as W).	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
soluble		-	1	-	3	
insoluble		H	5	-	10	

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Turpentine	$C_{10}H_{16}$	100	560	150	840	
Uranium compounds,	II					
natural,	O					
soluble (as U)		-	0.2	_	0.6	
Vanadium pentoxide	V_2O_5					
total inhalable dust		-	0.5	_	-	
fume and respirable dust			0.05	-	-	
Vinyt acetate	CH ₃ COOCH=CH ₂	10	30	20	60	
Vinyt benzene	$C_6H_5CH=CH_2$	100	420	250	1050	
Vinyt bromide	CH ₂ =CHBr	5	20	_	-	
4-Vinytcydohexene	$C_8H_{12}O_2$	10	60	_	_	
dioxide						
Vinyt toluenes, all	$C_6H_5C(CH_3)=CH_2$	_	_	100	480	
			0.4			
Warfarin (ISO)	$C_{19}H_{16}O_4$		0.1		0.3	
White spirit	ı	100	575	125	720	1 1
Xylene,o-,m-,p- or mixed	$C_6H_4(CH_3)_2$	100	435	150	650	Sk
isomers						
Xylidine, all isomers	$(CH_3)_2C_6H_3NH_2$	2	10	10	50	Sk
Yitrium	Y	-	1	-	3	
Zinc chloride, fume	Zn Cl ₂	-	1	-	2	
Zinc distearate	$Zn(C_{18}H_{35}O_2)_2$					
total inhalable dust		-	10	-	20	
Respirable dust		-	5	-	-	
Zinc oxide, fume	ZnO	-	5	-	10	
Zirconium compounds (as	Zr	_	5	_	10	
Zr)			3		10	

^{*} The OEL-RL for aluminium does not include exposure to aluminium coated with mineral oil or to fume arising from aluminium welding processes.

Abbreviations

- 1. OEL-CL Occupational Exposure Limit-Control Limit.
- 2. OEL-RL Occupational Exposure Limit-Recommended Limit.
- 3. ppm Parts per million.
- 4. mg/m³ milligrams per cubic metre.
- 5. Sk Skin absorption.
- 6. Sen capable of causing respirable sensitisation.
- 7. ISO International Standards Organization

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke Note

- (a) The concentration of "respirable dust" shall be determined from the fraction passing a size selector with an efficiency that will allow-
- (a) 100% particles of 1 µm aerodynamic diameter,
 - (ii) 50% particles of 5 µm aerodynamic diameter,
 - (iii) 20% particles of 6 µm aerodynamic diameter,
 - (iv) 0% particles of 7 μm aerodynamic diameter.
- (b) For asphyxiant substances, see annexure 5.
 - (c) TLV for asbestos
 Amosite 0.5 fiber > 5μ m/cc
 Chrysolite 2 fibers > 5μ m/cc
 Crocidolite 0.2 fiber > 55μ m/cc
 Other forms 2 fiber > 5μ m/c

TABLE 3
BIOLOGICAL EXPOSURE INDICES (BEI)

			1995
CHEMICAL DETERMINANT	SAMPLING TIME	BEl	Notation
ANILINE			
Total p-aminophenol in urine	End of shift	50 mg/g creatinine	C
Methemoglobin in blood	During or end of shift	1.5% of hemoglobin	B,C,D
ARSENIC AND SOLUBLE			
COMPOUNDS INCLUDING ARSINE			
Inorganic arsenic metabolites in urine	End of workweek	50 μg/g creatinine	В
BENZENE			
Total phenol in urine	End of shift	50 mg/g creatinine	В,С
Benzene in exhaled air:	Prior to next shift		
mixed-exhaled		0.08 ppm	D
end-exhaled		0.12 ppm	D
CADMIUM			
Cadmium in urine	Not critical	1 0 μg/g creatinine	В

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Biochem (UoN), PHD OSH ongoing			•
Cadmium in blood	Not critical	1 0 μg/l	В
CARBON DISULFIDE			
2-Thiothiazolidine-4-carboxylic acid in	End of shift	5 mg/g creatinine	
urine	Zild Of Siliit	5 mg/g creatmine	
CARBON MONOXIDE			
Carboxyhemaglobin in blood	End of shift	less than 8% of	В,С
		hemoglobin	ŕ
Carbon monoxide in end-exhaled air	End of shift	less than 40 ppm	B,C
CHLOROBENZENE			
Total 4-chlorocatechol in urine	End of shift	150 mg/g creatinine	C
Total p-clorophenol in urine	End of shift	25 mg/g creatinine	C
CHROMIUM (VI),			
Water soluble fume	Increase during	1 0μg/g creatinine	В
water soluble fulfic	shift	1 oμg/g creatinine	D
Total chromium in urine	End of shift at	30 μ <i>g/g</i> creatinine	В
	end of workweek	30 μg/g creatifine	D
N,N-DIMETHYLFORMAMIDE (DMF)			
N-Methylformamide in urine	End of shift	40 mg/g creatinine	В
ETHYL BENZENE			
Mandelic acid in urine	End of shift at end	1.5 g/g creatinine	A
	of workweek	1.5 g/g Cleatinine	Α
Ethyl benzene in end-exhaled air			D
FLUORIDES			
Fluorides in urine	Prior to shift	3 mg/g creatinine	B,C
	End of shift	10 mg/g creatinine	B,C
FURFURAL			
Total furoic acid in urine	End of shift	200 mglg creatinine	B,C
n-HEXANE			
2,5-Hexanedione in urine	End of shift	5 mg/g creatinine	C
n-Hexane in end-exhaled air			D
MERCURY			
Total inorganic mercury in urine	Prior to shift	35 μg/g creatinine	В
Total inorganic mercury in blood	End of shift at	15 μg/l	В
•	end of workweek	13 μg/1	D
METHEMOGLOBIN INDUCERS			
Methemoglobin in blood	During or end of	1.5% of hemoglobin	$B \subset D$
	shift	1.5 /0 Of Hellioglobili	D,C,D
METHANOL			
Methanol in urine	End of shift	15 mg/l	B,C
Formic acid in urine	Before shift at	80 mg/g creatinine	B,C

0725535054, 0734973581. GoK /DOSHS L. Senior Technical Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

Biochem (UoN), PHD OSH ongoing	osh@productivity.	<u>.co.ke</u>	
	end of workweek		
METHYL CHLOROFORM			
	Prior to the last		
Methyl chloroform in end-exhaled air		40 ppm	
	workweek	rr	
Trichloroacetic acid in urine	End of workweek	10 mg/l	C,D
	End of shift at		
Total trichloroethanol in urine	end of workweek	30 mg/l	C,D
	End of shift at		
Total trichloroethanol in blood	end of workweek	1 mg/l	C
METHYIETHYIKETONE	cha of workweek		
MEK in urine	End of shift	2 mg/l	_
METHYL ISOBUTYL KETONE	Line of Sinit	2 mg/1	
MIBK in urine	End of shift	2mg/l	
NITROBENZENE	Life of sinit	Zilig/ i	
MINOBENZENE	End of shift at		
Total p-nitrophenol in urine	end of workweek	5 mg/g creatinine	C
Methemoglobin in urine	End of shift	1.5% of hemoglobin	B,C,D
ORGANOPHOSPHORUS	Lift of sint	1.5% of hemogloom	D,C,D
CHOLINESTERASE INHIBITORS			
CHOLINES TERASE INTIBITORS		70% of individual's	
Cholinesterase activity in red cells	Discretionary	baseline	B,C,D
PARATHION		bascinic	
IAKATHON			
Total p-nitrophenol in urine	End of shift	0.5 mg/g creatinine	C,D
Total p-introphenol in time		70% of individual's	
Cholinesterase activity in red cells	Discretionary	baseline	B,C,D
PENTACHLOROPHENOL		bascinic	
I ENTACHLOROTHENOL	Prior to the last		
Total PCP in urine		2 mg/g creatinine	В
Total I CI III ullile	workweek	2 mg/g creatinine	В
Free PCP in plasma	End of shift	5 mg/l	В
PERCHIOROETHYIENE	Lift of silit	J 111g/1	В
FERCITIOROETITTIENE	Prior to the last		
Parablaroathylana in and ayhalad air		10ppm	
Perchloroethylene in end-exhaled air	workweek	ТОРРШ	
	Prior to the last		
Darahlaraathylana in blaad		1 ma/1	
Perchloroethylene in blood	shift of workweek	1 mg/l	
Trichlomo cotic acid in series		7 ma/1	CD
Trichlorocetic acid in urine	End of workweek	/ Ing/1	C,D

0725535054, 0734973581. GoK /DOSHS L. Senior Technical

Occupational Safety and Health Advisor;

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

PHENOL			[
Total phenol in urine STYRENE	End of shift	250 mg/g creatinine	В,С
Mandelic acid in urine	End of shift	800 mg/g creatine	C
	Prior to next shift	300 mg/g creatinine	C
Phenylglyoxylic acid in urine	End of shift	240 mg/g creatinine	B,C
	Prior to next shift	100 mg/g creatinine	B,C
Styrene in venous blood	End of shift	0.55 mg/l	D
	Prior to next shift	0.02 mg/l	D
TOLUENE		_	
Hippuric acid in urine	End of shift	2.5 gig creatinine	B,C
Toluene in venous blood	End of shift	1 mg/l	D
o-Cresol in urine	End of shift	1 mg/g creatinine	C
TRICHLOROETHYLENE			
Trichloroacetic acid in urine	End of workweek	100 mg/g creatinine	C
Trichloroacetic acid and trichloroethanol in urine	End of shift at end of workweek	300 mg/g creatinine	C
Free trichloroethanol in blood	End of workweek end of workweek	4 mg/l	С
Trichloroethylene in end-exhaled air		D	
XYLENE			
Methylhippuric acid in urine	End of shift	1.5 g/g creatinine	
	last four hours of shift	2 mg/min	-

Notations

"A" notation: This notation indicates that an identifiable population group might have an increased susceptibility to the effect of the chemical, thus leaving it unprotected by the recommended BEI.

"B" notation: This notation indicates that the determinant is usually present in a significant amount in biological specimens collected from subjects who have not been occupationally exposed. Such background levels are included in the BEI value.

"C" notation: This notation indicates that the determinant is non-specific, since it is observed after exposure to some other chemicals. These non-specific tests are preferred because they are easy to use and usually

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke offer a better correlation with exposure than specific tests. In such instances a BEI for a specific, less quantitative biological determinant is recommended as a confirmatory test.

"D" notation: This notation indicates that the biological determinant is an indicator of exposure to the chemical, but the quantitative interpretation of the measurement is ambiguous (semi-quantitative). These biological determinants should be used as a screening test if a quantitative test is not practical or a confirmatory test if the quantitative test is not specific and the origin of the determinant is in question.

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

SCHEDULE 3

MATERIAL SAFETY DATE SHEET

	No:	
MATERIAL SAFETY DATA SHEET	Date issued:	:
SHEET	Page	of
COMPANY DETAILS		
Name:]	Emergency
ivanic.		telephone no.:
Address:	,	Telex:
Tel:		Fax:
1. Product and Company idea	ntification:	
(Page 1 may be used as a	n emergency	
safety data sheet)		
Trade name:	•	Chemical abstract
	1	no.:
Chemical family:]	NIOSH no.:
Chemical name:]	Hazchem code:
Synonyms:		UN no.:
2. Composition:		
Hazardous components:		
EEC classification:		
R Phrases:		
3. Hazards Identification:		
Main hazard:		
Flammability:		
Chemical hazard:		
Biological hazard:		
Reproductive hazard:		
Eye effects: eyes		
Health effects - skin:		
Health effects - ingestion:		
Health effects - inhalation:		
Carcinogenicity:		
Mutagenicity:		
Neurotoxicity:		
4. First-aid Measures:		
Product in eve:		

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

	Product on skin:		
Product ingested:			
Product inhaled:			
	5. FIre-fighting Measures:		
	Extinguishing media:		
	Special hazards:		
	Protective ctothing:		
	6. Accidental Release Measures:		
	Personal precautions:		
	Environmental precautions:		
	Small spills:		
	Large spills:		
	7. Handling and Storage:		
	Suitable material:		
	Handling/storage precautions:		
	Exposure ControlslPersonal 8.		
	o. Protection:		
	Occupational exposure limits:		
	Engineering control measures:		
	Personal protection - respiratory:		
	Personal protection - hand:		
	Personal protection - eye:		
	Personal protection - skin:		
	Other protection:		
	9. Physical and Chemical Properties:		
	Appearance:		
	Odour:		
	pH:		
Boiling point:			
	Melting point:		
	Flash point:		
	Flammability:		
Autoflammability:			
	Explosive properties:		
Oxidizing properties:			
Vapour pressure:			
Density:			
Solubility - water:			
	Solubility - solvent:		
	Solubility - coefficient:		

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

USIT ongoing osite productivity.co.ke
Neurotoxicity:
10. Stability and Reactivity:
Conditions to avoid:
Incompatible materials:
Hazardous decomposition products:
11. Toxicological information:
Acute toxicity:
Skin and eye contact:
Chronic toxicity:
Carcinogenicity:
Mutagenicity:
Neurotoxicity:
Reproductive hazards:
12. Ecological Information:
Aquatic toxicity - fish:
Aquatic toxicity - daphnia:
Aquatic toxicity - algae:
Biodegradability:
Bio-accumulation:
Mobility:
German wgk:
13. Disposal Considerations:
Disposal methods:
Disposal of packaging:
14. Transport Information:
UN no.
Substance identity no.
ADR/RID class:
ADR/RID item no.
ADR/RID hazard identity no.:
IMDG - shipping name:
IMDG - class:
IMDG - packaging group:
IMDG- marine pollutant
IMDG- EMS no.:
IMDG- MFAG label no.:
1ATA - shipping name:
1ATA - class:
1ATA - subsidiary risk(s):
ADNR - class:

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

UK - description:

UK - emergency action class:

UK - classification:

Tremcard no.:

15. Regulatory Information:

EEC hazard classification:

Risk phases:

Safety phases:

National legislation:

6. Other Information:

SCHEDULE 2

Applying occupational exposure limits

1. General

The lists of occupational exposure limits given in Tables 1 and 2 unless otherwise stated, relate to personal exposure to substances hazardous to health in the air of the workplace.

2 Units of measurement

(2.1) In occupational exposure limits, concentrations of gases and vapour in air are usually expressed in parts per million (ppm), a measure of concentration by volume, as well as in milligrams per cubic meter of air (mg/m³), a measure of concentration by mass.

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

(2.2) In converting from ppm to mg/m^3 a temperature of 25°C and an atmospheric pressure of 101,325 KPa are used. Concentrations of airborne particles (fume, dust, etc) are usually expressed in mg/m^3 . i.e. ppm = 24.45 mg/m^3

Molecular of the substance

or

mg/m3 = molecular weight of the substance

ppm

24.45

- (2.3) In the case of dust, the limits in the tables refer to the *total inhalable* fraction unless specifically indicated as referring to the *respirable* fraction.
- (2.4) In the case of a man-made mineral fiber, the limit is expressed as fibers per milliliter of air (fibres/ ml^{1}).
- 3. Occupational exposure limits- control limits: OEL-CL (Table I)
 - (3.1) An OEL-CL is the maximum concentration of an airborne substance, averaged *over* a reference period, to which employees may be exposed by inhalation under any circumstances, and is specified together with the appropriate reference period in Table 1.
 - (3.2) Rule 5 of these rules, imposes a duty on the employer to take all reasonable precautions and to exercise all due diligence to ensure that exposure is kept as *far* below an OEL-CL as is reasonably practicable.
- 4 Occupational exposure limits Recommended limit OEL-RL Table 2
 - (4.1) An OEL-RL is the concentration of an airborne substance, averaged over a reference period, at which, according to current knowledge, there is no evidence that it is likely to be injurious to employees if they are exposed by inhalation, day after day, to that concentration.
 - (4.2) For a substance, which has been assigned an OEL-RL, exposure by inhalation should be reduced to that standard.
 - (4.3) Control of an OEL-RL as prescribed in regulation 5(1) can always be regarded as adequate control of that substance for the purposes of these rules, so far as exposure from inhalation is concerned. However, due to the variations in process control and the fluctuations in substance concentrations in the workplace, it will be prudent for employers to reduce exposure below an

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

OEL-RL so as to ensure that the exposure of all employees does not exceed that OEL-RL. Similarly, it is not intended that the statutory requirements under regulation 5 (1) should discourage the further application of good occupational hygiene principles in order to reduce exposure below the OEL-RL.

- 5 Long-term and short-term exposure limits
 - (5.1) The pattern of effects due to exposure to substances hazardous to health varies considerably depending on the nature of the substance and the exposure. Some effects require prolonged or accumulated exposure.
 - (5.2) The long-term (8-hour time weighted average) exposure limit is intended to control such effects by restricting the total intake by inhalation over one or more work shifts. Other effects may be seen after brief exposures, which have occurred once or repeatedly.
 - (5.3) Short-term limits (usually 15 minute) may be applied to such substances. Where long-term limits also apply, the short-term limits restrict the magnitude of excursion above the average concentration during longer exposures. For those substances for which no short-term limit is specified, it is recommended that a figure of three times the long-term limit be used as a guideline for controlling short-term excursions in exposure.
 - (5.4) With some other substances, brief exposure may be critical and the exposure limit necessary to prevent these excursions will also controls any other effects. A separate long-term limit is not considered necessary in such cases and the short-term limit applies throughout the shift.
 - (5.4) Exposure limits are expressed as airborne concentrations averaged over a specified period of time. The period for the long-term limit is normally eight hours. When a different period is used, this is stated. The averaging period for the short-term exposure limit is normally 15 minutes. Such a limit applies to any 15-minute period throughout the working shift.
 - 6 Limitations to the application of exposure limits
 - (6.1) The exposure limits relate to personal exposure with the exception of the annual OEL-CL for vinyl chloride, which should be recorded as the time weighted average of vinyl chloride in the atmosphere of a working place over a period of one year. The OEL-RL for cotton dust is not a personal exposure standard, but a static air standard.

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

- (6.2) The limits cannot readily be extrapolated to evaluate or control non-occupational exposure, e.g. levels of contamination in the neighborhood dose to an industrial plant. OELs only apply to persons at work. Employers should also take into account their duties under the Environmental Management and co-ordination Act (EMCA).
- (6.3) The OELs are also only approved for use where the atmospheric pressure is between 85 KPa and 101,325 KPa. This covers the normal range of meteorological variations and slightly pressurized workplaces such as cleaning rooms, but not the higher pressures that may be encountered in, for example, tunneling or underwater hyperbaric chambers. Such situations require special assessments.
- (6.4).Occupational exposure limits, as set out in Tables 1 and 2 are intended to be used for normal working conditions in workplaces. OELs are not, however, designed to deal with serious accidents or emergencies, particularly where employees may be exposed to rapidly rising concentrations of gas, as may arise from a major escape due to plant failure.
- (6.5) Over and above the employers' responsibilities to ensure that the requirements of these rules are met, they also have a clear responsibility to ensure that the plant is designed, operated and maintained in a way that avoids accidents and emergencies. Where appropriate, detection, alarm and response measures should be used in order to minimize the effect of any such unplanned events.
- (6.6) To help maintain adequate operational control, employers may find it helpful to select their own indicators of control when undertaking investigations or corrective action.

7 Pesticides

Substances used as active ingredients in pesticides are listed under their chemical names and/or their common (ISO) names. These names may sometimes be used as parts of the names of proprietary pesticide formulations. In all cases the exposure limit applies to the specific active ingredients and not to the formulation as a whole.

8 Dusts

The general approach necessary to control occupational exposure to dusts is as follows:

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

- (8.1) Not all dusts have been assigned occupational exposure limits but the lack of such limits should not be taken to imply an absence of hazard. In the absence of a specific exposure limit for a particular dust, exposure should be adequately controlled.
- (8.2) Where there is no indication of the need for a lower value, personal exposure should be kept below both 10 mg/m³ 8-hour time-weighted average total inhalable dust and 5 mg/m³ time weighted average respirable dust. Such, or greater, dust concentrations should be taken as the *substantial concentrations*.
- (8.3) A *substantial* concentration of dust should be taken as a concentration of 10 mg/m³, 8-hour time weighted average, of total inhalable dust or 5 mg/m³, 8-hour time-weighted average, of respirable dust, where there is no indication of the need for a lower value, and as such they are referred to as *substances hazardous to health*.
- 9. Total inhalable dust and respirable dust
- (9.1) *Total inhalable dust* approximates to the fraction of airborne material that enters the nose and mouth during breathing and is therefore available for deposition in the respiratory tract.
- (9.2) *Respirable dust* approximates to the fraction, which penetrates to the gas exchange region of the lung.
- (9.3) Where dusts contain components, which have their own assigned occupational exposure limits, all the relevant limits should be complied with.

10 Fume

- (10.1) Where a separate OEL has been set for *fume*; it should normally be applied to solid particles generated by chemical reactions or condensed from the gaseous state, usually alter volatilization from melted substances.
- (10.2) The generation of fume is often accompanied by a chemical reaction such as oxidation or thermal breakdown.
- 11 Absorption through the skin

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

- (11.1) In general, for most substances the main route of entry into the body is by inhalation. The OELs given in these regulations solely relate to exposure by this route.
- (11.2) Certain substances such as phenol, aniline and certain pesticides (marked in the Tables with an SK notation) have the ability to penetrate the intact skin and thus become absorbed into the body.
- (11.3) Absorption through the skin can result from localized contamination, for example from a splash on the skin or clothing, or in certain cases from exposure to high atmospheric concentrations of vapour.
- (11.4) Serious effects can result in little or no warning and it is necessary to take special precautions to prevent skin contact when handling these substances.
- (11.5) Where the properties of the substances and the methods of use provide a potential exposure route via skin absorption; these factors should be taken into account in determining the adequacy of the control measures.

12 Sensitizers

- (12.1) Certain substances may cause sensitization of the respiratory tract if inhaled or skin contact occurs.
- (12.2) Respiratory sensitizers can cause asthma, rhinitis, or extrinsic allergic alveolitis.
- (12.3) Skin sensitizers cause allergic contact dermatitis. Substances, which cause skin sensitizations, are not necessarily respiratory sensitizers or vice-versa.
- (12.4) Only a proportion of the exposed population will become sensitized, and those who do become sensitized, will not have been identified in advance. Individuals who become sensitized may produce symptoms of ill health after exposure even to minute concentrations of the sensitizer.
- (12.5) Where it is reasonably practicable, exposure to sensitizers should be prevented. Where this cannot be achieved, exposure should be kept as low as is reasonably practicable and activities giving rise to short-term peak concentrations should receive particular attention. As with other substances, the spread of contamination by sensitizers to other working areas should also be prevented, as far as is reasonably practicable.

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

(12.6). The Sen notation (marked in the Tables with a Sen notation) has been assigned only to those sensitizers that may cause sensitization by inhalation. Remember that other substances not contained in these Tables can act as respiratory sensitizers.

13. Other factors

Working conditions, which impose additional stress on the body, such as exposure to ultra-violet radiation, high temperatures, pressures and humidity may increase the toxic response to a substance. In such cases, specialist advice may be necessary to evaluate the effects of these factors.

14. Mixed exposures General

- (14.1) The majority of OELs listed in Tables 1 and 2 are for single compounds or for substances containing a common element or radical, e.g. *tungsten and compounds*, *and isocyanides*. A few of the limits relate to substances commonly encountered as complex mixtures or compounds e.g. *white spirit, rubber fume*, and *welding fume*.
- (14.2) However, workers are frequently subjected to other mixed exposures involving solids, liquids, aerosols or gases. These exposures can arise as a result of work with materials containing a mixture of substances, or from work with several individual substances, simultaneously or successively, in a work shift.
- (14.3) Mixed exposures require careful assessment of their health effects and the appropriateness of control standards. The following paragraphs provide a brief summary of the advice on the application of exposure limits in these circumstances. In all cases of doubt, specialist advice should be sought.

15 Effects of mixed exposures

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

- (15.1) The ways in which the constituent substances of a mixed exposure interact vary considerably. Some mixed exposures involve substances that act on different body tissues or organs, or by different toxicological mechanisms, these various effects being independent of each other.
- (15.2) Other mixtures will include substances that act on the same organs, or by similar mechanisms, so that the effects reinforce each other and the substances are additive in their effect. In some cases the overall effect is considerably greater than the sum of the individual effects and the system is synergistic. This may arise from mutual enhancement of the effects of the constituents or because one substance potentiates another, causing it to act in a way which it would not do alone.

16 Assessment and control

- (16.1) With all types of mixed exposures, it is essential that assessments be based on the concentrations of each of the constituents in air to which workers are exposed. Depending on the nature of the constituents and the circumstances of use, the relative concentrations of the constituents in air may differ considerably from those in the liquid or solid source material. The composition of the bulk material should not be relied on for assessment unless there is good evidence for doing so.
- (16.2) Where mixed exposure occurs, the first step is to ensure adequate control of exposure for each individual substance. However, the nature and amount of the other substances in a mixture can influence the level to which it is reasonable practicable to reduce exposure to a substance subject to an OEL-CL.
- (16.3) When limits for specific mixtures have been established, they should be used only where they are applicable, and in addition to any relevant individual limits. They should not be extended to inappropriate situations. It is then necessary to assess whether further control is needed to counteract any increased risk from the substances acting in conjunction.
- (16.4) Expert assessments for some particular mixed exposures may be available and can be used as guidelines in similar cases. In other cases, close examination of the toxicological data will be necessary to determine which of the main types

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

of interaction (if any) are likely for the particular combination of substances concerned.

(16.5) The various types should be considered in the following order:

16.5.1 Synergistic substances:

Known cases of synergism and potentiation are considerably less common than the other types of behaviour in mixed exposures. However, they are the most serious in their effects and require the most strict control. They are also the most difficult to assess and wherever there is reason to suspect such interaction, specialist advice should be obtained;

16.5.2 Additive substances:

Where there is reason to believe that the effects of the constituents are additive, and where the exposure limits are based on the same health effects, the mixed exposure should be assessed by means of the formula

$$C_1/L_1+C_2/L_2+C_3/L_3....>1$$

where C_1 , C_2 , etc are the time-weighted average (TWA) concentrations of constituents in air and L_1 , L_2 , etc are the corresponding exposure limits. The use of this formula is only applicable where the additive substances have been assigned OELs, and L_1 , L_2 , etc. relate to the same reference period in the list of approved OELs. Where the sum of the C/L fractions does not exceed one, the exposure is considered not to exceed the OELs. If one of the constituents has been assigned an OEL-CL, then the additive effect should be taken into account in deciding the extent to which it is reasonably practicable to further reduce exposure; and

16.5.3 Independent substances:

Where no synergistic or additive effects are known or considered likely, the constituents can be regarded as acting independently. It is then sufficient to ensure compliance with each of the OELs individually.

(16.6) The above steps provide basic protocol for assessment of mixed exposures. It is open to persons responsible for control of exposure to treat all nonsynergistic systems as though they were additive. This avoids the need to distinguish additive and independent systems and can be regarded as the more

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

prudent course, particularly where the toxicity data are scarce or difficult to assess.

- 17 Monitoring mixed exposure
- (17.1) The number of components of a mixed exposure, for which routine air monitoring

is required, can be reduced if their relative concentrations can be shown to be

constant.

- (17.2) This involves the selection of a key or marker, which may be one of the constituents, as a measure of the total contamination. Exposure to the marker is controlled at a level selected so that exposures to all components will be controlled in accordance with the criteria in paragraphs 16.5.1 and 16.5.2.
- (17.3) However, if one of the components has been assigned an OEL-CL, the level of the exposure to that substance should always be reduced as far as is reasonably practicable.
- (17.4) If this approach is to be used, it should take place under the guidance of suitable specialist advice.
 - (17.5) Rules 13 imposes a duty on the employer to monitor the exposure of employees to substances hazardous to health.
- 18 Complicating factors
- 18.1. Several factors that complicate the assessment and control of exposure to individual substances will also affect cases of mixed exposures and will require similar special consideration. Such factors include-
 - 18.1.1 exposure to a substance for which there is no established limit or for which an OEL-CL has been set;
 - 18.1.2 the relevance of factors such as alcohol, medication, smoking and additional stresses;
 - 18.1.3 exposure of the skin to one or more substances that can be absorbed by this route, as well as by inhalation; and

Mr. Mwandawiro Maghanga BSc Biochem/Chem (UoN). MSc Biochem (UoN), PHD OSH ongoing osh@productivity.co.ke

18.1.4 substances in mixture may mutually affect the extent of their absorption, as well as their health effects, at a given level of exposure.

MADE THIS 2007

DR .N. KULUNDU

Minister for labour and human resource development